Skip to main content
Log in

Sedimentary Thickness and Upper Crustal Structure of the North Cambay Rift, India Deduced from Gravity Data: New Evidence of Pre-trappean Sediments

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

A gravity survey was carried out to estimate the sedimentary thickness and to map upper crustal geometry over the northern part of the Cambay rift. Structural lineaments delineated using the total horizontal gradient of the Bouguer anomaly indicate a major lineament trend in the NW-SE direction. Results of the density modelling using residual Bouguer anomaly reveal the average thickness of the Quaternary and Tertiary sediments to be between 0.5 and 6 km, while the Deccan trap thickness varies between 0.5 and 3 km. It is seen that the Mesozoic sediment (maximum thickness ∼0.6 km) is sandwiched between the Deccan trap and granitic basement, which indicates the possible existence of a rift in the late Jurassic-early Cretaceous. Based on the residual Bouguer and density modelling results, the spatial locations of the NE-SW trending Unhawa ridge and the N-S trending Mehsana uplift are provided, which are believed to be the remnant rock of the Proterozoic age. A high-density body, interpreted as a magmatic underplating layer, is also found in the lower part of the middle crust along the central part of the rift, which continues in the lower crust. The magmatic underplating layer is formed during the Reunion hotspot and lithospheric interaction in the Cretaceous period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avasthi, D.N., Ramakotaiah, G., Varadarajan, S., Rao, N.D.J., and Behl, G.N. (1971) Study of the Deccan Traps of Cambay Basin by geophysical methods. Bull. Volcanol., v.35, pp.743–749.

    Article  Google Scholar 

  • Barton, P.J. (1986) The relationship between seismic velocity and density in the continental crust - a useful constraint? Geophys. Jour. Royal Astronom. Soc., v.87, pp.195–208. doi:https://doi.org/10.1111/j.1365-246X.1986.tb04553.x.

    Article  Google Scholar 

  • Biswas, S.K. (1982) Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch Basin. AAPG Bull., v.66, pp.1497–1513.

    Google Scholar 

  • Biswas, S.K. (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, v.135, pp.307–327.

    Article  Google Scholar 

  • Blakely, R.J. (1995) Potential Theory in Gravity and Magnetic Applications, Cambridge Univ. Press, pp.182–210, 311–358.

  • Blakely, R.J. and Simpson, R.W. (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, v.51, pp.1494–1498.

    Article  Google Scholar 

  • Brocher, T.M. (2005) Empirical relations between elastic wave speeds and density in the Earth’s crust. Bull. Seismol. Soc. Amer., v.95, pp.2081–2092. doi:https://doi.org/10.1785/0120050077.

    Article  Google Scholar 

  • Buck, W.R. (1988) Flexural rotation of normal faults. Tectonics, v.7, pp.959–973. doi:https://doi.org/10.1029/TC007i005p00959.

    Article  Google Scholar 

  • Buck, W.R. (2006) The role of magma in the development of the Afro-Arabian Rift System. Geol. Soc., London, Spec. Publ., v.259(1), pp43–54.

    Article  Google Scholar 

  • Campbell, I.H. and Griffiths, R.W. (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett., v.99(1–2), pp.79–93.

    Article  Google Scholar 

  • Chakraborty, K., and Agarwal, B.N.P. (1992) Mapping of crustal discontinuities by wavelength filtering of the gravity field. Geophys. Prospect., v.40, pp.801–822.

    Article  Google Scholar 

  • Christensen, N.I., and Mooney, W.D. (1995) Seismic velocity structure and composition of the continental crust: a global view. Jour. Geophys. Res., v.100, pp.9761–9788.

    Article  Google Scholar 

  • Chopra, S., Chang, T.M., Saikia, S., Yadav, R.B.S., Choudhury, P., and Roy, K.S. (2014) Crustal structure of the Gujarat region, India: New constraints from the analysis of teleseismic receiver functions. Jour. Asian Earth Sci., v.96, pp.237–254.

    Article  Google Scholar 

  • Chouhan, A.K. (2020) Structural fabric over the seismically active Kachchh rift basin, India: Insight from world gravity model 2012. Environ. Earth Sci., v.79(316), pp.1–14.

    Google Scholar 

  • Chouhan, A.K., Choudhury, P., Pal, S.K. (2020a) New evidence for a thin crust and magmatic underplating beneath the Cambay rift basin, Western India through modelling of EIGEN-6C4 gravity data. Jour. Earth Syst. Sci., v.129. doi:https://doi.org/10.1007/s12040-019-1335-y

  • Chouhan, A.K., Choudhury, P., and Pal, S.K. (2020b) Evidence of shallow lithosphere and crust in the western continental margin of India through modelling of gravity data. European Geophysical Union General Assembly 2020, Vienna, Austria. doi:https://doi.org/10.5194/egusphere-egu2020-316

  • Cordell, L. and Grauch, V.J.S. (1982) Mapping basement magnetisation zones from aeromagnetic data in the San Juan Basin, New Mexico. SEG Technical Program Expanded Abstracts, pp.246–247.

  • Danda, N., Rao, C.K., and Kumar, A. (2017) Geoelectric structure of north Cambay rift basin from magnetotelluric data. Earth Planets and Space, v.69, pp.140.

    Article  Google Scholar 

  • Dhar, P.C., and Bhattacharya, S.K. (1993) Status of Exploration in the Cambay Basin, Proceedings second seminar on petroliferous basins of India., Indian Petroleum Publishers, Dehradun, 2, 79, pp.1–32.

    Google Scholar 

  • Dietz, R.S. and Holden, J.C. (1970) Reconstruction of Pangaea: Breakup and dispersion of continents, Permian to Present. Jour. Geophys. Res., v.75(26), 4939.

    Article  Google Scholar 

  • Director General of Hydrocarbon (DGH), Government of India (GOI) website, (2020) http://dghindia.gov.in//assets/downloads/56cfe9a4c0c6eThe_Cambay_rift_Basin.pdf

  • Dixit, M.M., Tewari, H.C., and Rao, C.V. (2010) Two-dimensional velocity model of the crust beneath the South Cambay Basin, India from refraction and wide-angle reflection data. Geophys. Jour. Internat., v.181, pp.635–652.

    Google Scholar 

  • Ekka, M.S., Sahoo, S.D., Pal, S.K., Roy, P.N.S. and Mishra, O.P. (2022) Comparative analysis of the structural pattern over the Indian Ocean basins using EIGEN6C4 Bouguer gravity data, Geocarto Internat., pp.1–22. doi:https://doi.org/10.1080/10106049.2022.2087748.

  • García, M.C., Heredia, A., Cordero, G., Camprubí, A., Mendoza, A.N., Gutiérrez, F.O., Beraldi, H., and Bernal, S.R. (2016) Hydrothermal vents and prebiotic chemistry: a review. Boletín de la Sociedad Geológica Mexicana, v.68(3), pp.599–620.

    Article  Google Scholar 

  • Geosoft Oasis Montaj, (2017) GMSYS-Gravity and Magnetic Modeling Software, User’s guide version 9: Ontario, Canada.

  • Grauch, V.J.S., and Cordell, L. (1987) Short Note - Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Geophysics, v.52, pp.118–121.

    Article  Google Scholar 

  • Jacobsen, B.H. (1987) A case for upward continuation as a standard separation filter for potential field maps. Geophysics, v.52, pp.1138–1148.

    Article  Google Scholar 

  • Kaila, K.L., Tewari, H.C., Krishna, V.G., Dixit, M.M., Sarkar, D., and Reddy, M.S. (1990) Deep seismic sounding studies in the north Cambay and Sanchor basins, India. Geophys. Jour. Internat., v.103, pp.621–637.

    Article  Google Scholar 

  • Kumar, A., Roy, P.N.S., Das, L.K. (2016) Vertical density contrast and mapping of basement, Conrad and Moho morphologies through 2D spectral analysis of gravity data in and around Odisha, India. Jour. Asian Earth Sci., v.124, pp.181–190. doi:https://doi.org/10.1016/j.jseaes.2016.05.002.

    Article  Google Scholar 

  • Kundu, J., Wani, M.R., and Thakur, R.K. (1993) Structural Style in South Cambay Rift and its Control on Postrift Deltaic Sedimentation, Proceedings second seminar on Petroliferous Basins of India, Indian Petroleum Publishers, Dehradun: 2, pp.79–96.

    Google Scholar 

  • Lambiase, J.J., and Bosworth, W. (1995) Structural controls on sedimentation in continental rifts. Geol. Soc. London, Spec. Publ., no.80, pp.117–144.

  • Lowrie, W. (2007) Gravity, the figure of the Earth and geodynamics. In: Fundamentals of Geophysics, 2nd ed. Cambridge: Cambridge University Press, pp.43–120.

    Google Scholar 

  • Ludwig, J.W., Nafe, J.E., and Drake, C.L. (1970) Seismic refraction. In: Maxwell, A.E. (Ed.), The Sea, v.4. Wiley Inter Science, New York, 53–84.

    Google Scholar 

  • McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., v.40, pp.25–32.

    Article  Google Scholar 

  • Mahatsente, R., Önal, G., and Çemen, I. (2018) Lithospheric structure and the isostatic state of Eastern Anatolia: Insight from gravity data modelling. Lithosphere, v.10 (2), pp.279–290. doi:https://doi.org/10.1130/L685.1.

    Article  Google Scholar 

  • Mann, P., L. Gahagan, and Gordon, M. (2003) Tectonic setting of the world’s giant oil and gas fields, In: M. Halbouty (Ed.), Giant oil fields of the decade 1990–1999. AAPG Mem., v.78, pp.15–105. doi:https://doi.org/10.1306/M78834C2.

    Google Scholar 

  • Maus, S., and Dimri, V. (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys. Jour. Internat., v.124, pp.113–120.

    Google Scholar 

  • Merh, S.S. (1995) Geology of Gujarat, India: Geological Society of India, Bangalore, 220p.

    Google Scholar 

  • Merle, O. (2011) A simple continental rift classification. Tectonophysics, v.513, pp.88–95.

    Article  Google Scholar 

  • Milanovsky, E.E. (1972) Continental rift zones: Their arrangement and development. Developments in Geotectonics, v.7, pp.65–70.

    Article  Google Scholar 

  • Mishra, M. and Patel, B.K. (2011) Gas shale potential of Cambay formation, Cambay basin, India, Proceedings: The 2nd South Asian Geoscience Conference and Exhibition, GEO India-2011, pp.1–5.

  • Mohan, K., Kumar, G.P., Chaudhary, P., Choudhary, V.K., Nagar, M., Khuswaha, D., Patel, P., Gandhi, D., and Rastogi, B.K. (2017) Magnetotelluric investigations to identify geothermal source zone near Chabsar hotwater spring site, Ahmedabad, Gujarat, Northwest India. Geothermics, v.65, pp.198–209.

    Article  Google Scholar 

  • Nabhakumar, K., Lakra, M.N., Kumar, D. and Niyogi, K. (2012) Estimation of thickness of Deccan trap in Broach Jambusar block of Cambay basin–an innovative approach. 9TH Biennial international conference and exposition on petroleum geophysics, Hyderabad 114.

  • Nelson, R.A., Patton, T.L., and Morley, C.K. (1992) Rift-Segment Interaction and Its Relation to Hydrocarbon Exploration in Continental Rift Systems. AAPG Bull., v.76(8), pp.1153–1169.

    Google Scholar 

  • Pandey, U.S.D. (2012) Petroleum exploration in Mesozoic basins in Western onshore India, 9th Biennial International conference & Exposition on petroleum geophysics–Hyderabad.

  • Pirajno, F. (1992) Hydrothermal Mineral Deposits of Continental Rift Environments. In: Hydrothermal Mineral Deposits. Springer, Berlin, Heidelberg. pp.507–577. doi:https://doi.org/10.1007/978-3-642-75671-9_14.

    Google Scholar 

  • Raju, A.T.R., Chaube, A.N., and Chowdhary, L.R. (1971) Deccan Trap and the geologic framework of the Cambay basin. Bull. Volcanol., v.35, pp.521–538.

    Article  Google Scholar 

  • Raju, A.T.R, and Srinivasan, S. (1993) Cambay basin-Petroleum Habitat, Proceedings second seminar on Petroliferous Basins of India, Indian Petroleum Publishers, Dehradun, 2, pp.33–78.

    Google Scholar 

  • Rao, K.M., Kumar, M.R., and Rastogi, B.K. (2015) Crust beneath the northwestern Deccan Volcanic Province, India: Evidence for uplift and magmatic underplating. Jour. Geophys. Res., Solid Earth, v.120, pp.3385–3405.

    Article  Google Scholar 

  • Roy, A.B. (2006) Seismicity in the Peninsular Indian Shield: Some geological considerations. Curr. Sci., v.94(4), pp.456–463.

    Google Scholar 

  • Schmeling, H. (2010) Dynamic models of continental rifting with melt generation. Tectonophysics, v.480(1), pp.33–47.

    Article  Google Scholar 

  • Schulte, S.M. and Mooney, W.D. (2005) An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophys. Jour. Internat., v.161, pp.707–721. doi:https://doi.org/10.1111/j.1365-246X.2005.02554.x.

    Article  Google Scholar 

  • Sharma, J., Kumar, M.R., Roy, K.S., and Roy, P.N.S. (2018) Seismic Imprints of Plume-Lithosphere Interaction beneath the Northwestern Deccan Volcanic Province. Jour. Geophys. Res., Solid Earth, v.123, pp.10831–10853.

    Article  Google Scholar 

  • Spector, A., and Grant, F.S. (1970) Statistical models for interpreting aeromagnetic data. Geophysics, v.35, pp.293–302.

    Article  Google Scholar 

  • Talwani, M. and Heirzler, J.R. (1964) Computation of magnetic anomalies caused by two-dimensional bodies or arbitrary shape. Computers in the Mineral Industry, School of Earth Sciences, Standford University.

  • Talwani, M., Worzel, J.L., and Landisman, M. (1959) Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Jour. Geophys. Res., v.64, pp.49–59.

    Article  Google Scholar 

  • Tewari, H.C., Dixit, M.M., Sarkar, D., and Kaila, K.L. (1991) A crustal density model across the Cambay basin, India, and its relationship with the Aravallis. Tectonophysics, v.194, pp.123–130.

    Article  Google Scholar 

  • Tewari, H.C., Dixit, M.M., and Sarkar, D. (1995) Relationship of the Cambay rift basin to the Deccan volcanism. Jour. Geodynam., v.20, pp.85–95.

    Article  Google Scholar 

  • Tewari, H.C., Rao, G.S.P., and Prasad, B.R. (2009) Uplifted crust in parts of western India. Jour. Geol. Soc. India, v.73, pp.479–488.

    Article  Google Scholar 

  • Venkatesan, T.R., Pande, K., and Gopalan, G. (1993) Did Deccan volcanism pre-date the Cretaceous/Tertiary transition? Earth Planet. Sci. Lett., v.119, pp.181–189. doi:https://doi.org/10.1016/0012-821X(93)90015-2.

    Google Scholar 

  • White, R.S. and McKenzie, D.P. (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Jour. Geophys. Res., Solid Earth, v.94, pp.7685–7729.

    Article  Google Scholar 

  • Withjack, M.O., Schlische, R.W. and Olsen, P.E. (2002) Rift-Basin Strucutre and its influence on sedimentary systems, in: Sedimentation in Continental Rifts. SEPM (Soc. Sediment. Geol.), pp.57–81.

  • Yang, R., Wang, Y., and Cao, J. (2014) Cretaceous source rocks and associated oil and gas resources in the world and China: A review. Petroleum Sci., v.11(3), pp.331–345.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director General, ISR, Gandhinagar, for his encouragement and approval to publish this manuscript. The authors acknowledge DST, the Government of Gujarat, for the financial assistance through different projects under which gravity data is acquired. Special thanks are addressed to all people participating in the gravity data acquisition and Dr. Rakesh Dumka, ISR, for RTK data processing. The authors are also thankful to the Director, IIT(ISM), for his keen interest in the study. The authors thank the editor, JGSI and anonymous reviewers for their critical comments that enhance the quality of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kumar Chouhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, A.K., Choudhury, P. & Pal, S.K. Sedimentary Thickness and Upper Crustal Structure of the North Cambay Rift, India Deduced from Gravity Data: New Evidence of Pre-trappean Sediments. J Geol Soc India 99, 773–782 (2023). https://doi.org/10.1007/s12594-023-2384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2384-z

Navigation