Skip to main content

Advertisement

Log in

Estimating groundwater recharge using GIS-based distributed water balance model in an environmental protection area in the city of Sete Lagoas (MG), Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Improvement in modern water resource management has become increasingly reliant on better characterizing of the spatial variability of groundwater recharge mechanisms. Due to the flexibility and reliability of GIS-based index models, they have become an alternative for mapping and interpreting recharge systems. For this reason, an index model by integrating water balance parameters (surface runoff, actual evapotranspiration, and percolation) calculated by Thornthwaite and Mather’s method, with maps of soil texture, land cover, and terrain slope, was developed for a sustainable use of the groundwater resources. The Serra de Santa Helena Environmental Protection Area, next to the urbanized area of Sete Lagoas (MG), Brazil, was selected as the study area. Rapid economic growth has led to the subsequent expansion of the nearby urban area. Large variability in soil type, land use, and slope in this region resulted in spatially complex relationships between recharge areas. Due to these conditions, the study area was divided into four zones, according to the amount of recharge: high (> 100 mm/year), moderate (50–100 mm/year), low (25–50 mm/year), and incipient (> 25 mm/year). The technique proved to be a viable method to estimate the spatial variability of recharge, especially in areas with little to no in situ data. The success of the tool indicates it can be used for a variety of groundwater resource management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen PA (1997) Earth surface processes. Blackwell Sciences, Oxford, 404 p

    Book  Google Scholar 

  • Andreo B, Vías JM, Durán JJ, Jiménez P, López-Geta JA, Carrasco F (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeol J 16:911–925

    Article  Google Scholar 

  • ASCE—American Society of Civil Engineers (1969) Task force on effect of urban development on flood discharges, committee on flood control, “effect of urban development on flood discharges—current knowledge and future needs”, J Hydraul Division, 95 (HY1), 287–309

    Google Scholar 

  • Batelaan O, De Smedt F (2007) GIS-based recharge estimation by coupling surface-subsurface water balances. J Hydrol 337:337–355

    Article  Google Scholar 

  • Birkle P, Torres Rodríguez V, González Partida E (1998) The water balance for the basin of the valley of Mexico and implications for future water consumption. Hydrogeol J 6(4):500–517

    Article  Google Scholar 

  • Blavoux B, Mudry J, Puig JM (1992) Budget, functioning and protection of Fontaine de Vaucluse system (south-east France) (in French). Geodin Acta 5(3):153–172

    Article  Google Scholar 

  • Branco Jr, Costa MT (1961) Belo Horizonte-Brasilia road map tour. Brazilian Congress of Geology, Brasilia. Radioactive Research Institute, Federal University of Minas Gerais (UFMG), Publication 15, Belo Horizonte, p 25

  • Charman PEV, Murphy BW (2000) Soils: their properties and management, 2nd edn. Oxford University Press, Melbourne, 448p

    Google Scholar 

  • Chenini I, Benmammou A, Elmay M (2010) Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in central Tunisia (Maknassy Basin). Int J Water Resour Manag 24:921–939

    Article  Google Scholar 

  • Cherkauer DS (2004) Quantifying ground water recharge at multiple scales using PRMS and GIS, Ground Water, vol 42, 1, pp 97–110

  • Coutagne A (1954) Study of some regional hydrometereological correlations and their algebraic interpretation (in French)

  • Custodio E, Llamas MR (2001) Hidrologia subterrânea. Tomo I e II, Ediciones Omega. S.A, Barcelona. 2350p

    Google Scholar 

  • Dardene MA (1978) Synthesis on the stratigraphy of Bambuí Group in Central Brazil. Brazilian Congress of Geology, 30, Recife. Annals Recife: Brazilian Society of Geology, 1978 v.2, pp 597–610

  • Das MM, Saikia MD (2013) Watershed management. PHI Learning Private Limited. 303p

  • Dripps W, Bradbury K (2007) A simple, daily soil–water balance model for estimating the spatial and temporal distribution of ground water recharge in temperate humid areas. Hydrogeol J 15(3):433–444

    Article  Google Scholar 

  • Dripps W, Bradbury K (2009) The spatial and temporal variability of ground water recharge in a forested basin in Northern Wisconsin. Hydrol Process 24(4):383–392

    Google Scholar 

  • Feitosa FAC (2008) Hidrogeologia: conceitos e aplicações [Hydrogeology: concepts and aplications, 3rd edn. CPRM, Rio de Janeiro, 812p LABHID.

    Google Scholar 

  • Fenn DG, Hanley KJ, De Geare TV (1975) Use of the Water Balance Method for predicting leachate generation from solid waste disposal sites. US Environmental Protection Agency, Report No. EPA/530/SW168

  • Fetter CW (1994) Applied hydrogeology, 616. Macmillan College Publishing, Inc., New York

    Google Scholar 

  • Flint AL, Flint LE, Kwicklis EM, Fabryka-Martin JT, Bodvarsson GS (2002) Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. Hydrogeol J 10(1):180–204

    Article  Google Scholar 

  • Freeze AR, Cherry JA (1979) Groundwater: Englewood Cliffs, New Jersey, Prentice-Hall, 604

  • Galvão P, Halihan T, Hirata R (2015a) The Karst Permeability Scale Effect of Sete Lagoas, MG, Brazil. J Hydrol 531:85/15–105. https://doi.org/10.1016/j.jhydrol.2015.11.026

    Google Scholar 

  • Galvão P, Halihan T, Hirata R (2015b) Evaluating karst geotechnical risk in the urbanized area of Sete Lagoas, Minas Gerais, Brazil. Hydrogeol J 23(7):1499–1513

    Article  Google Scholar 

  • Galvão P, Hirata R, Cordeiro A, Osório DB, Peñaranda J (2016) Geologic conceptual model of the municipality of Sete Lagoas (MG, Brazil) and the surroundings. Anais da Academia Brasileira de Ciências 88(1):35–53

    Article  Google Scholar 

  • Galvão P, Halihan T, Hirata R (2017a) Transmissivity of aquifer by capture zone method: an application in the Sete Lagoas Karst Aquifer, MG, Brazil. Anais da Academia Brasileira de Ciências, v. 89, pp 91–102

  • Galvão P, Hirata R, Halihan T, Terada R (2017b) Recharge sources and hydrochemical evolution of an urban karst aquifer, Sete Lagoas, MG, Brazil. Environ Earth Sci 76:159. https://doi.org/10.1007/s12665-017-6482-3

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, Cambridge, 264

    Book  Google Scholar 

  • Heathcote JA, Lewis RT, Soley RWN (2004) Rainfall routing to runoff and recharge for regional groundwater resource models. Q J Eng Geol Hydrogeol 37(2):113–130

    Article  Google Scholar 

  • Jasrotia AS, Kumar R, Saraf AK (2007) Delineation of groundwater recharge sites using integrated remote sensing and GIS in Jammu district, India. Int J Remote Sens 28(22):5019–5036

    Article  Google Scholar 

  • Jocson JMU, Jenson JW, Contractor DN (2002) Recharge and aquifer response: northern Guam Lens Aquifer, Guam Mariana Islands. J Hydrol 260:231–254

    Article  Google Scholar 

  • Koerner RM, Daniel DE (1997) Final covers for solid waste landfills and abandoned dumps. ASCE Press, Reston, 256 p

    Book  Google Scholar 

  • Leeper GW, Uren NC (1993) Soil science: an introduction, 5th edn. Melbourne University Press, Melbourne, 312p

    Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. International Contributions to Hydrogeology 8. Heise, Hannover

    Google Scholar 

  • Lin Y-F, Anderson MP (2003) A digital procedure for ground water recharge and discharge pattern recognition and rate estimation. ground water, vol 41, 3, pp 306–315

  • Murphy EM, Ginn TR, Phillips JL (1996) Geochemical estimates of palaeo recharge in the Pasco Basin: evolution of the chloride mass balance technique. Water Resour Res 32(9):2853–2868

    Article  Google Scholar 

  • Nag SK (2005) Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. J Indian Soc Rem Sens 33(4):522–529

    Article  Google Scholar 

  • Nolan BT, Healy RV, Taber PE, Perkins K, Hitt KJ, Wolock DM (2006) Factors influencing ground-water recharge in the eastern United States. J Hydrol 332(1–2):187–205. https://doi.org/10.1016/j.hydrol.2006.06.029

    Google Scholar 

  • Oliveira MAM (1967) Contribution to the geology of the southern part of the São Francisco Basin and adjacent areas. Collection of Reports Exploration, Rio de Janeiro 1: Petrobras, n.3, pp 71–105

  • Pessoa P (1996) Hydrogeological characterization of the region of Sete Lagoas - MG: Potentials and Risks. Master Thesis. Department of Geosciences, University of São Paulo. São Paulo

  • Rashid M, Lone MA, Ahmed S (2012) Integrating geospatial and ground geophysical informationas guidelines for groundwater potential zones in hard rock terrains of south India. Environ Monit Assess 184:4829–4839. https://doi.org/10.1007/s10661-011-2305-2

    Article  Google Scholar 

  • Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do Bioma Cerrado. In: Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora [The main vegetation types of the Cerrado. In Cerrado: ecologyand flora]. SM Sano, Embrapa-CPAC, Planaltina, pp 151–212

    Google Scholar 

  • Ribeiro JH, Tuller MP, Danderfer Filho A (2003) Geological mapping of the region of Sete Lagoas, Pedro Leopoldo, Matozinhos, Lagoa Santa, Vespasiano, Capim Branco, Prudente de Morais, Confins and Funilândia, Minas Gerais State, Brazil (scale1:50,000). 2nd edn. Belo Horizonte. 54 p

  • Rwanga SS, Ndambuki JM (2017) Approach to quantify groundwater recharge using gis based water balance model: a review. Int J Adv Agric Environ Eng (IJAAEE) 4:Issue 1

    Google Scholar 

  • Samper J (1998) Evaluation of recharge from rainfall using water balances: utilization, calibration and uncertainties (in Spanish). Bol Geol Miner 109:347–370

    Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Schobbenhaus C (1984) Geology of Brazil. National Department of Mineral Production, pp 275–277

  • Schöll WU, Fogaça ACC (1973) Stratigraphy of the Espinhaço in the Diamantina region. In: Symposium on Geology of Minas Gerais State, Brazil, 1. Acts. Belo Horizonte: Brazilian Geology Society p 55–73 [Bulletin. 1]

  • Schwartz FW, Zhang H (2003) Fundamentals of ground water. Wiley, New York

    Google Scholar 

  • Sharma ML (1990) Groundwater recharge. Balkema, Rotterdam

    Google Scholar 

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27(20):4599–4620

    Article  Google Scholar 

  • Sukhija BS, Nagabhushanam P, Reddy DV (1996) Groundwater recharge in semi-arid regions of India: an overview of results obtained using tracers. Hydrogeol J 4(3):50–71

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Publications in climatology. Laboratory of climatology. New Gersey 8:104

    Google Scholar 

  • Tilahun K, Merkel BJ (2009) Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia Hydrogeol J 17:1443–1457. https://doi.org/10.1007/s10040-009-0455-x

  • Tucci CEM, Barros MT, Porto RL (1995) Drenagem Urbana. Ed., Porto Alegre, Universidade/UFRGS, 414 p

    Google Scholar 

  • Tuller MP, Ribeiro JH, Signorelli N, Féboli WL, Pinho JMM (2010) Sete Lagoas—Abaeté Project, Minas Gerais State, Brazil. 6 geological maps, scale 1:100.000 (Geology Program of Brazil), 160p

  • Westenbroek SM, Kelson VA, Dripps WR, Hunt RJ, Bradbury KR, 2010. SWB—a modified thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge: U.S. Geological Survey Techniques and Methods 6-A31, 60 p

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying groundwater recharge in a regional, semiarid environment. Ground Water 33:458–468

    Article  Google Scholar 

  • IBGE—Brazilian Institute of Geography and Statistics (2015) Basic Municipal Information.Available: http://www.cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=316720&search=minas-gerais|sete-lagoas. Accessed Oct 2016

Download references

Acknowledgements

This work was supported by Biopreservação Consultoria e Empreendimentos. Special thanks go to Gustavo Ganzaroli Mahé, Sidney Schaberle Goveia, and Kyle Spears.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Galvão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvão, P., Hirata, R. & Conicelli, B. Estimating groundwater recharge using GIS-based distributed water balance model in an environmental protection area in the city of Sete Lagoas (MG), Brazil. Environ Earth Sci 77, 398 (2018). https://doi.org/10.1007/s12665-018-7579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7579-z

Keywords

Navigation