Skip to main content
Log in

Characteristics of the Seismic Clusters Bounding the Ramu-Markham Fault Zone, Eastern Papua New Guinea

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The regionally extensive Ramu-Markham-Fault-Zone (RMFZ) in Papua-New-Guinea (PNG) passes through the seismically-active hinterland of the Bismarck subduction zone in SW-Pacific. The seismicity map for 400km segment of RMFZ shows that higher magnitude earthquakes mainly originate in four spatial clusters (I–IV), asymmetrically disposed from in-land to offshore on either side of RMFZ. The cluster III have produced the 2019 Buloloearthquake (Mw 7.1). The spatial and temporal characters for all four seismic clusters was estimated by: (i) b-value based on maximum-likelihood method; (ii) expected maximum magnitude (Mw) by Gumbel extreme value statistics and surface rupture length; and (iii) the Hurst coefficient (K) and Hurst plot. Hurst plots on sequential seismic moments in the clusters illustrate an alternating positive and negative sloping moment-release pattern over progressive time-period that corresponds to low and high b-values respectively. The regional stress pattern on north and south of RMFZ and for four seismic clusters are analysed by inversion of CMT focal-mechanism data. The result unravels a significant change in regional stress pattern across the RMFZ: (i) a pure-compressive stress regime corresponding to clusters I and II in the ‘PNG Highlands’ that gradually changes to transpressive in the off-shore cluster IV along north of RMFZ, and (ii) the regional stress pattern for earthquakes south of RMFZ including cluster III shows absence of any particular stress orientation and causative faults are randomly oriented. This leads to the presentation that RMFZ is a deep penetrative fault, rather than a crustal ramp fault restricted to 11–18km depth as advocated in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abers, G., and McCaffrey, R. (1988) Active deformation in the New Guinea fold and thrust belt: Seismological evidence for strike slip faulting and basement involved thrusting. Jour. Geophys. Res., v.93, pp.13332–13354.

    Article  Google Scholar 

  • Aki, K. (1965) Maximum likelihood estimate of b in the formula log N = abM and its confidence limits. Bull. Earthquake Res. Inst., Tokyo Univ., v.43, pp.237–239.

    Google Scholar 

  • Amorese, D., Grasso, J-R., and Rydelek, P.A., (2010) On varying b-values with depth: results from computer-intensive tests for Southern California. Geophys. Jour. Internat., v.180, pp.347–360.

    Article  Google Scholar 

  • Anton, L. and Gibson, G., (2007) Earthquake hazard in Papua New Guinea: Problems and the way forward. Monash Univ., Melbourne. https://www.researchgate.net/profile/Gary_Gibson4/publication/237387648_Earthquake_HazardIn_Papua_New_Guinea_Problems_And_The_Way_Forward/links/552bbdbd0cf29b22c9c1e0a0.pdf.

  • Chan, L.S. and Chandler, A. M. (2001) Spatial bias in b-value of the frequency magnitude relation for the Hong Kong region. Jour. Asian Earth Sci., v.20, pp.3–81.

    Article  Google Scholar 

  • Delvaux, D. and Sperner, B. (2003) Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: Nieuwland D (Ed.), New Insights into Structural Interpretation and Modelling. Geol. Soc. London, Spec. Publ., v.212, pp.75–100.

  • Gumbel, E.J. (1958) Statistics of Extremes. Columbia Univ. Press, New York, 375p.

    Book  Google Scholar 

  • Hatzidimitriou, P., Mountrakis, D.P. and Papazachos, B. (1985) The seismic parameter b of the frequency-magnitude relation and its association with the geological zones in the area of Greece. Tectonophysics, v.120, pp.141–151.

    Article  Google Scholar 

  • Hanks, H.C., and Kanamori, H., (1979) A moment magnitude scale. Jour. Geophys. Res., v.84(B5), pp.2348–2350. DOI: https://doi.org/10.1029/JB084iB05p02348.

    Article  Google Scholar 

  • Hayes, G. and Crone, T. (2019) At what depth do earthquakes occur? What is the significance of the depth? section in Natural Hazards. Retrieved from United States Geological Survey. https://www.usgs.gov/faqs/what-depth-do-earthquakes-occur-what-significance-depth?qt-news_science_products=0#qt-news_science_products.

  • Hurst, H.E. (1951) Long term storage capacity of reservoirs. T. Amer. Soc. Civil Eng., v.16, pp.770–808.

    Google Scholar 

  • Hurst, H.E. (1956) Methods of using long-term storage in reservoirs. Proc. Inst. Civil Eng. Part 1, 5, pp.519–590.

  • Kanamori, H. (1981) The nature of seismic patterns before large earthquakes. In: Simpson, D.W., and Richards, P.G. (Eds.), Earthquake Prediction: An International Review, Maurice Ewing Series, Vol.4, AGU, Washington D.C., pp.1–19.

    Google Scholar 

  • Main, I.G., Meredith, P., and Jones, C. (1989) A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics. Geophys. Jour. Internat., v.96, pp.131–138.

    Article  Google Scholar 

  • Mansukhani, S. (2012) The Hurst Exponent: Predictability of Time Series. Analytics Magazine, Issue July/August 2012, http://analytics-magazine.org/the-hurst-exponent-predictability-of-time-series/

  • Mcguire, R.K. (2004) Seismic Hazard and Risk Analysis, EERI Monograph 10, Earthquake Engineering Research Institute, Oakland, California, 221p.

    Google Scholar 

  • Mukhopadhyay, B., Sengupta, D., Mondal, P. K., and Gonnade, G.D. (2016) Seismotectonic appraisal and tsunami potentiality of the seismic source zones in Andaman-Sumatra arc system, Indian Ocean. Indian Jour. Geosci., v.70, pp.139–152.

    Google Scholar 

  • Schorlemmer, D., Wiemer, S. and Wyss, M. (2005) Variations in earthquake-size distribution across different stress regimes. Nature, v.437, pp.539–542.

    Article  Google Scholar 

  • Scordilis, E.M. (2006) Empirical global relations converting MS and mb to moment magnitude. Jour. Seismol., v.10, pp.225–236.

    Article  Google Scholar 

  • Shi, Y. and Bolt, B. A. (1982) The standard error of the magnitude-frequency b-value. Bull. Seismo. Soc. Amer., v.721, pp.1677–1687.

    Google Scholar 

  • Stevens, C., McCaffrey, R., Silver, E.A., Sombo, Z., English, P., van der Kevie, J. (1998) Mid crustal detachment and ramp faulting in the Markham Valley, Papua New Guinea. Geology, v.26, pp.847–850.

    Article  Google Scholar 

  • Stanaway, R. (2014) Deformation modelling to support the Papua New Guinean Geodetic Datum 1994 (PNG94). Kuala Lumpur, FIG Congress.

    Google Scholar 

  • Stanaway, R., Wallace, L., Sombo, Z., Peter, J., Palusi, T., Safomea, B., and Nathan, J., (2009) Lae, a city caught between two plates — 15 years of deformation measurements with GPS. 43rd Association of Surveyors PNG Congress, Lae, 12th—15th August 2009, Focus on Challenges; Society-Space-Surveyors.

  • Tregoning, P., Lambeck, K., Stoltz, A., Morgan, P., McClusky, S. C., Van der Beek, P., McQueen, H., Jackson, R.J., Little, R.P., Laing, A., and Murphy, B., (1998) Estimation of current plate motions in Papua New Guinea from Global Positioning System observations. Jour. Geophys. Res., v.103, pp.12181–12203.

    Article  Google Scholar 

  • Tregoning, P., Jackson, R. J., McQueen, H., Lambeck, K., Stevens, C., Little, R. P., Curley, R., and Rosa, R. (1999) Motion of the South Bismarck Plate, Papua New Guinea. Geophys. Res. Lett., v.26, pp.3517–3520.

    Article  Google Scholar 

  • Tsapanos, T. (1990) b-value of two tectonic parts in the circum-Pacific belt. PAGEOPH, v. 143, pp.229–242.

    Article  Google Scholar 

  • Urbancic, T.I., Trifu, C.I., Long, J.M., and Young, R.P. (1992) Space-time correlation of b values with stress release. PAGEOPH, v.139, pp.449–462.

    Article  Google Scholar 

  • Wallace, L. (2002) Tectonics and arc-continent collision in Papua New Guinea: Insights from geodetic, geophysical and geologic data. PhD Thesis, University of California, Santa Cruz, 244p.

  • Wallace, L.M., Stevens, C., Silver, A., McCaffrey, R., Loratung, W., Hasiata, S., Stanaway, R., Curley, R., Rosa, R., and Taugaloidi, J. (2004) GPS and seismological constraints on active tectonics and arc continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone. Journal of Geophysical Research: Solid Earth 109, pp.B5. DOI: https://doi.org/10.1029/2003JB002481

    Article  Google Scholar 

  • Wallis, J.R., and Matalas, N.C. (1971) Correlogram analysis revisited. Water Resour. Res., v.7, pp. 448–1459. DOI: https://doi.org/10.1029/WR007i006p01448.

    Article  Google Scholar 

  • Wells, D.L., and Coppersmith, K.J. (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull. Seismol. Soc. Amer., v.84(4), pp.974–1002.

    Google Scholar 

  • Wiemer, S. and Wyss, M. (1997) Mapping the frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mount Spurr, Alaska. Geophy. Res. Lett., v.24, pp.189–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Noho, Manoj Mukhopadhyay, Basab Mukhopadhyay or Diptansu Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noho, G., Mukhopadhyay, M., Mukhopadhyay, B. et al. Characteristics of the Seismic Clusters Bounding the Ramu-Markham Fault Zone, Eastern Papua New Guinea. J Geol Soc India 97, 9–20 (2021). https://doi.org/10.1007/s12594-021-1621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1621-6

Navigation