Skip to main content
Log in

Constraints on the genesis of the Jiande polymetallic copper deposit in South China using fluid inclusion and O-H-Pb isotopes

  • Published:
Journal of the Geological Society of India

Abstract

The Jiande copper deposit is located in the Qin-Hang metallogenic belt, South China. The deposit is dominated by “stratiform-like” ores, which are hosted in the dolomite of the Upper Carboniferous Huanglong Formation. These ore bodies were previously proposed to be Carboniferous sedimentary exhalative (Sedex) style mineralization, but they also appear to be related to the Late Mesozoic granodiorite porphyry at Jiande. Three stages of mineralization can be observed. The prograde skarn minerals garnet and diopside were formed in the pre-ore stage. The “stratiform-like” ores, with minor quartz-polymetallic veins, were formed in the main mineralization stage. The post-ore stage is characterized by quartz-calcite ± pyrite veins. Fluid inclusions in quartz from the pre-ore skarn, the main stage of mineralization, and post-ore quartz–calcite ± pyrite veins were studied. Fluid inclusion petrography shows that two-phase liquid-rich (Type I), two-phase vapor-rich (Type II), and halite-bearing (Type III) fluid inclusions can be identified in the studied hydrothermal quartz samples. Primary Type II and Type III fluid inclusions only occur in quartz from the the main stage, whereas Type I fluid inclusions are present in all three stages of hydrothermal quartz.Type I fluid inclusions in pre-ore stage have homogenization temperatures of 290-368°C and salinities of 2.6-8.8 wt.% NaCl equiv. Type II and coexisting Type III fluid inclusions in the main stage share similar homogenization temperatures of 293 to 334 °C and 290 to 326 °C,but have two contrasting salinity ranges of 1.2 to 2.2 wt.% and 31.87 to 38.16 wt.% NaCl equiv, respectively. The coexistence of Type II and Type III fluid inclusions and their similar homogenization temperatures but contrasting salinities suggest that fluid boiling processes occurred. Type I fluid inclusions in the post-ore quartz–calcite veins have homogenization temperatures of 202-278 °C and salinities of 0.2-6.5 wt.% NaCl equiv. The hydrogen and oxygen isotopes (δD ranges from -78 ‰ to -61 ‰, δ18OH2O calculated from quartz are from 8.1 ‰ to 10.6 ‰) of fluid inclusions in quartz imply that ore fluids were principally derived from magmatic water. The lead isotopes of sulfide from the ores are close to the orogenic Pb evolution curve and are also similar to those of the Jiande Jurassic igneous rocks, suggesting that the metals were sourced mostly from the Jurassic igneous rocks. The skarn alteration, inferred boiling fluid inclusion assemblages, stable isotopic features of magmatic fluids, and metal source imply that the main stages of mineralization in the Jiande polymetallic copper deposit is of skarn-type, related to Jurassic granodiorites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, T., Van, R.A.,and Lang, J.R. (2004) Compositon and evolution of ore fluids in a magmatic–hydrothermal skarn deposit. Geology, v.32, pp.117–120.

    Article  Google Scholar 

  • Bierlein, F.P., McNaughton, N.J. (1998) Pb isotope finger printing of mesothermal gold deposits from central Victoria, Australia: implications for ore genesis. Mineralium Deposita, v.33, pp.633–638.

    Article  Google Scholar 

  • BGMRZ. (1989) Bureau of Geology and Mineral Resources of Zhejiang Province, Geological Memoir of Zhejiang Province(in Chinese with English abstract).Geological Publishing House,Beijing, 361p.

  • Bodnar, R. (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solution. Geochim. Cosmochim. Acta, v.7, pp.683–694.

    Article  Google Scholar 

  • Cai, Y. T., Ni, P., Wang, G. G., Pan, J. Y., Zhu, X. T., Chen, H., and Ding, J. Y. (2016) Fluid inclusion and H–O–S–Pb isotopic evidence for the Dongxiang Manto-type copper deposit, South China. Jour. Geochem Explor, v.171, pp.71–82.

    Article  Google Scholar 

  • Casey, W.H., and Taylor, B.E.(1982) Oxygen, hydrogen, and sulfur isotope geochemistry of aportion of the West Shasta Cu-Zn district, California. Econ. Geol., v.77, pp.38–49.

    Article  Google Scholar 

  • Chang, Y., and Liu, X. (1983) On strata-bound skarn deposits. Mineral Deposits, v.vn2, pp.11–20 (in Chinese with English abstract).

    Google Scholar 

  • Chang, Y., Liu, X., and Wu, Y.C. (1991) The copper–iron belt of the lower and middle reaches of the Changjiang River. Geology Publication House, Beijing, 71p.

    Google Scholar 

  • Chen, H., Ni, P., Wang, G.G., Chen, R.Y., Lü, Z.C., Pang, Z.S., Gen, L., Zhang, B.S.,and Yuan, H.X. (2017) Petrogenesis of Ore-Related Granodiorite Porphyry in the Jiande Copper Deposit, SE China: Implications for the Tectonic Setting and Mineralization. Resource Geology, v.67, pp.117–138.

    Article  Google Scholar 

  • Chen, H., Ni, P., Wang, R.C., Wang, G.G., Zhao, K.D., Ding, J.Y., and Xu, Y. F. (2015) A combined fluid inclusion and S-Pb isotope study of the Neoproterozoic Pingshui volcanogenic massive sulfide Cu–Zn deposit, Southeast China. Ore Geol. Rev., v.66, pp.388–402.

    Article  Google Scholar 

  • Chen, H., Ni,.P, Liu, J.R., Yan, J.B., Yu, X.M., and Zhu, G.S. (2011) Fluid inclusion study on the Pingshui copper deposit in Shaoxing, Zhejiang Province, China. Acta Petrologica Sinica, v.27, pp.1352–1360 (in Chinese with English abstract).

    Google Scholar 

  • Chen, J., Foland, K., Xing, F., Xu, X., and Zhou, T. (1991) Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China. Geology, v.19, pp.815–818.

    Article  Google Scholar 

  • Chen, Y., and Wang, D. (2012) Four main topics concerning the metallogeny related to Mesozoic magmatism in South China. Geotectonica Et Metallogenia, v.36, pp.315–321 (in Chinese with English abstract).

    Google Scholar 

  • Clayton, R.N., O’Neil, J.R., and Mayeda, T.K. (1972) Oxygen isotope exchange between quartz and water. Jour. Geophys. Res., v.77, pp.3057–3067.

    Article  Google Scholar 

  • Collins, P.L. (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol., v.74, pp.1435–1444.

    Article  Google Scholar 

  • de Ronde, C.E.J. (1995) Fluid chemistry and isotopic characteristics of seafloor hydrothermalsystems and associated VMS deposits: potential for magmatic contributions. Mineralogical Association of Canada Short Course Series, v.3, pp.479–510.

    Google Scholar 

  • Friedman, I. (1953) Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta, v.4, pp.89–103.

    Article  Google Scholar 

  • Geologic report of the Songkengwu section of the Jiande copper deposit, Xin’anjiang Town, Jiande city, Zhejiang province, 2005, Unpublished report, Jiande copper deposit, Jiande, China, in Chinese.

  • Gu, L. (1984) Massive sulphide deposits in the continental fault depression troughs, South China: PhD thesis, Nanjing University, Nanjing, China, in Chinese.

    Google Scholar 

  • Gu, L., Zaw, K., Hu,W., Zhang, K., Ni, P., He, J., Xu, Y., Lu, J., and Lin, C. (2007) Distinctive features of Late Palaeozoic massive sulphide deposits in South China. Ore Geol. Rev., v.31, pp.107–138.

    Article  Google Scholar 

  • Hall, D.L., Sterner, S.M., Bodnar, R.J. (1988) Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol., v.83, pp.197–202.

    Article  Google Scholar 

  • He, X., Zhu, X., Yang, C., and Tang, S. (2005) High-precision analysis of Pb isotope ratios using MC-ICP-MS. Acta Geologica Sinica, v.26, pp.19–22 (in Chinese with English abstract).

    Google Scholar 

  • Hedenquist, J.W., and Henley, R.W. (1985) The importance of CO2 on freezing point measurements of fluid inclusions; evidence from active geothermal systems and implicationsfor epithermal ore deposition. Econ. Geol., v.80, pp.1379–1406.

    Article  Google Scholar 

  • Hezarkhani, A., Williams-Jones, A.E., and Gammons, C.H. (1999) Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium deposita, v.34, pp.770–783.

    Article  Google Scholar 

  • Hsü, K.J., Li, J., Chen, H., Wang, Q., Sun, S., and ªengör, A. (1990) Tectonics of South China: key to understanding West Pacific geology. Tectonophysics, v.183, pp.9–39.

    Article  Google Scholar 

  • Huston, D.L., and Taylor, B.E. (1999) Genetic significance of oxygen and hydrogen isotope variationsat the Kidd Creek volcanic-hosted massive sulfide deposit, Ontario, Canada. Econ. Geol. Monograph, v.10, pp.335–351.

    Google Scholar 

  • Inverno, C., Lopes, C., d’Orey, F., and Carvalho, D. (2000) The Cu(–Au) stockwork deposit of Salgadinho, Cercal, Pyrite Belt, SW Portugal–paragenetic sequence and fluid inclusion investigation, Volcanic environments and massive sulphide deposits. International Conference and Field Meeting, pp. 16–19.

    Google Scholar 

  • Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T., and Kunze, K. (2005) Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: The Bingham porphyry. Earth Planet. Sci. Lett., v.235, pp.229–243.

    Article  Google Scholar 

  • Leach, D.L., Bradley, D.C., and Huston, D. (2010) Sediment-hosted lead-zinc deposits in Earth history. Econ. Geol., v.105, p.593–625.

    Article  Google Scholar 

  • Li, L., Ni,P., Wang,G.G., Zhu,A.D., Pan,J.Y., Chen,H., Huang,B., Yuan,H.X., Wang,Z.K., and Fang, M.H. (2017) Multi-stage fluid boiling and formation of the giant Fujiawu porphyry Cu-Mo deposit in South China, Ore Geol. Rev., v.81, pp.898–911.

    Google Scholar 

  • Li, Z.X., Li, X., Kinny, P., Wang, J., Zhang, S., and Zhou, H. (2003) Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res., v.122, pp.85–109.

    Article  Google Scholar 

  • Liu, J.J., Cao, S.Y., and Li, Y.L. (1997) Origin of the Jiande copper deposit, Zhejiang. Mineral Resours Geology, v.53, pp.145–154 (in Chinese with English abstract).

    Google Scholar 

  • Lu, H.Z., Fan, H.R., Ni, P., Ou, G.X., Shen, K., and Zhang, W.H. (2004) Fluid Inclusions. Science Press, Beijing, 487p (in Chinese).

    Google Scholar 

  • Mao, J., Xie, G., Guo, C., Yuan, S., Cheng, Y., and Chen, Y. (2008) Spatial–temporal distribution ofMesozoic ore deposits in South China and their metallogenic settings. Geology Journal of China University, v.14, pp.510–526 (in Chinese with English abstract).

    Google Scholar 

  • Mao, J., Xie, G., Duan, C., Pirajno, F., Ishiyama, D., and Chen, Y. (2011) A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite–apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geol. Rev., v.43, pp.294–314.

    Article  Google Scholar 

  • Megaw, P.K. (1998) Carbonate-hosted Pb-Zn-Ag-Cu-Au replacement deposits: An exploration perspective. Mineralized intrusion-related skarn systems Mineralogical Association of Canada Short Course Series, pp.337–58.

    Google Scholar 

  • Meinert, L., Dipple, G., and Nicolescu, S.(2005) World skarn deposits. Econ. Geol., v.100, pp.299–336.

    Google Scholar 

  • Meng, X.J., Dong, G.Y., and Liu, J.G. (2007) Lengshuikeng Porphyry Pb-Zn-Ag Deposit in Jiangxi Province. Geological Publishing House, Beijing, 184p (in Chinese).

    Google Scholar 

  • Ni, P., Wang, G.G., Yu, W., Chen, H., Jiang, L.L., Wang, B.H., Zhang, H.D., Xu,Y.F. (2015) Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie Orogen, Central China. Ore Geol. Rev., v.65, pp.1078–1094.

    Article  Google Scholar 

  • Ni, P., Wang, G.G., Chen, H., Xu, Y.F., Guan, S.J., Pan, J.Y., Li, L. (2015) An Early Paleozoic orogenicgold belt along the Jiang-Shao Fault, South China: Evidence from fluid inclusions and Rb-Srdating of quartz in the huanggshan and Pingshui deposits. Jour. Asian Earth Sci., v.103, pp.87–102.

    Article  Google Scholar 

  • Ni, P., Wang, G.G., Cai Y.T., Zhu X.T., Yuan, H.X., Huang,B., Ding, J.Y., Chen, H. (2017) Genesis ofthe Late Jurassic Shizitou Mo deposit, South China: Evidencesfrom fluid inclusion, H-O isotope and Re-Os geochronology. Ore Geol. Rev., v.81, pp.871–883.

    Article  Google Scholar 

  • Ohmoto, H. and R, Rye. (1979) Geochemistry of Hydrothermal Ore Deposits. H.L. Barnes, pp.509–567.

    Google Scholar 

  • Ohmoto, H. and Goldhaber, M.B. (1997) Sulfur and carbon isotopes. Geochemistry of hydrothermal ore deposits, v.3, pp.517–611.

    Google Scholar 

  • Pirajno, F., Ernst, R.E., and Borisenko, A.S. (2009) Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geol. Rev., v.35, pp.114–136.

    Article  Google Scholar 

  • Pan, Y. and Dong, P. (1999) The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geol. Rev., v.15, pp.177–242.

    Article  Google Scholar 

  • Roedder, E.(1984) Fluid inclusions. Rev. Mineral, v.12, pp.644.

  • Samson, I.M. and Russell, M.J. (1987) Genesis of the Silvermines zinc-leadbarite deposit,Ireland; fluid inclusion and stable isotope evidence. Econ. Geol, v.82, pp.371–394.

    Article  Google Scholar 

  • Seward, T. and Barnes, H. (1997) Metal transport by hydrothermal ore fluids. Geochemistry of hydrothermal ore deposits, v.3, pp.435–486.

    Google Scholar 

  • Rankin, A. H., Alderton, D. H. M., and Alderton, D. H. M. (1985). A practical guide to fluid inclusion studies. Blackie, Glasgow.

    Google Scholar 

  • Sorby, HC (1858) On the microscopic structure of crystals, indicating the origin of minerals and rocks. Quart. Journal Geol. Soc. London, v.14, pp.453–500.

    Article  Google Scholar 

  • Shui, T., Xu, B.T., Liang, R.H., and Qiu, Y.S. (1986) Paleo-continent building belt in Shaoxing-Jiangshan. Chinese Sci. Bull., v.6, pp.444–448.

    Google Scholar 

  • Taylor, H.P. (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. Geochemistry of hydrothermal ore deposits, v.3, pp.229–302.

    Google Scholar 

  • Wang, G.G., Ni, P., Zhao, K.D., Wang, X.L., Liu, J.Q., Jiang, S.Y., and Chen, H. (2012) Petrogenesisof theMiddle Jurassic Yinshan volcanic-intrusive complex, SE China: implicationsfor tectonic evolution and Cu–Au mineralization. Lithos, v.150, pp.135–154.

    Article  Google Scholar 

  • Wang, G.G., Ni, P., Wang, R.C., Zhao, K.D., Chen, H., Ding, J.Y., Zhao, C., and Cai, Y.T.(2013) Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit,South China: implications for ore genesis and exploration. Jour. Asian Earth Sci., v.74, pp.343–360.

    Article  Google Scholar 

  • Wang, G.G., Ni, P., Yu, W., Chen, H., Jiang, L.L., and Li, P.F. (2014) Petrogenesis of Early Cretaceouspost-collisional granitoids at Shapinggou, Dabie Orogen: implications for crustal architecture and porphyry Mo mineralization. Lithos, v.184, pp.393–415.

    Article  Google Scholar 

  • Wang, G.G., Ni, P., Yao, J., Wang, X.L., Zhao, K.D., Zhu, R.Z., Xu, Y.F., Pan, J.Y., Li L., and Zhang, Y.H. (2015) The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: constraints from high-Mg adakitic rocks. Ore Geol. Rev., v.67, pp.109–126.

    Article  Google Scholar 

  • Wang, G.G., Ni, P., Zhao, C., Wang, X.L., Li, P.F., Chen, H., Zhu, A.D., and Li, L. (2016) Spatio-temporal reconstruction of Late Mesozoic silicic large igneous province (SLIP) and related epithermal mineralization in South China: insights from the Zhilingtou volcanic-intrusive complex. Jour. Geophys. Res.: Solid Earth, 121(11), 7903–7928.

    Article  Google Scholar 

  • Wang, G.G., Ni,P., Zhu,A.D., Wang,X.L., Li,L., Hu,J.S., Lin, W.H., and Huang, B. (2017) 1.01-0.98 Ga mafic intra-plate magmatism and related Cu-Au mineralization in the eastern Jiangnan orogen: evidence from Liujia and Tieshajie basalts. Precambrian Res., doi:http://doi.org/10.1016/j.precamres.2017.04.018.

    Google Scholar 

  • Wang, J.and Li, Z.X. (2003) History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Res., v.122, pp.141–58.

    Article  Google Scholar 

  • Wang, X.L., Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, H.S., O’Reilly, S.Y., Xu, X.S., Liu, X.M., and Zhang, G.L. (2007) Detrital zircon geochronology of Precambrian basement sequencesin the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Res., v.159, pp.117–131.

    Article  Google Scholar 

  • Xiao, W. and He, H. (2005) Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China). Geol. Soc. Amer. Bull., v.117, pp.945–61.

    Article  Google Scholar 

  • Xu, K.Q. and Zhu, J.C. (1978) Origin of the sedimentary-(or volcanosedimentary-) iron-copperdeposits in some fault depression belts in Southeast China. Fujian Geology, v.4, pp.1–68 (inChinese).

    Google Scholar 

  • Xu, K., Wang, H., and Zhou, J. (1996) A diucussion on the exhalative sedementary massive sulfide deposits of South China. Geological Journal of Universities, v.3, pp.241–56 (in Chinese with English abstract).

    Google Scholar 

  • Xu, Z.Z., Zhang, H.T., and Jiang, Y. (1981) Study on the conditions of structure to control theore in Jiande copper deposit. Jour. Chengdu Institution Geol., v.2, pp.6–17 (In Chinese withEnglish abstract).

    Google Scholar 

  • Yang, M.G. and Mei, Y.W. (1997) Characteristics of geology and metallization in the Qinzhou-Hangzhou paleoplate juncture. Geol. Miner. Resources of South China, v.3, pp.52–59 (in Chinese with English abstract).

    Google Scholar 

  • Zartman, R.E. and Doe, B.R. (1981) Plumbotectonics-the model. Tectonophysics, v.75, pp.135–162.

    Article  Google Scholar 

  • Zhao, J.H., Zhou, M.F., Yan, D.P., Zheng, J.P., and Li, J.W. (2011) Reappraisal of the ages ofNeoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology, v.39, pp.299–302.

    Article  Google Scholar 

  • Zhao, C., Ni, P., Wang, G.G., Ding, J.Y., Chen, H., Zhao, K.D., Cai, Y.T., and Xu, Y.F. (2013) Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshanorogenic gold deposit, South China. Geofluids, v.13, pp.506–527.

    Article  Google Scholar 

  • Zheng, Y.F., Wu, R.X., Wu, Y.B., Zhang, S.B., Yuan, H., and Wu, F.Y. (2008) Riftmelting of juvenilearc-derived crust: geochemical evidence from Neoproterozoic volcanic and graniticrocks in the Jiangnan Orogen, South China. Precambrian Res.,v.163, pp.351–383.

    Article  Google Scholar 

  • Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S., and Niu, Y.L. (2006) Petrogenesis of Mesozoic granitoidsand volcanic rocks in South China: a response to tectonic evolution. Episodes, v.29, pp.26–33.

    Google Scholar 

  • Zhou, T., Yuan, F., Yue, S., Liu, X., Zhang, X., and Fan, Y. (2007) Geochemistry and evolution ofore-forming fluids of the Yueshan Cu-Au skarn-and veintype deposits, Anhui Province,South China. Ore Geol. Rev.,v.31, pp.279–303.

    Article  Google Scholar 

  • Zhu, X.T., Ni, P., Wang, G.G., Cai, Y.T., Chen, H., and Pan, J.Y. (2016). Fluid inclusion, H-O isotope and Pb-Pb age constraints on the genesis of the Yongping copper deposit, South China. Jour. Geochem. Explor., v.171, pp.55–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Ni, P., Chen, RY. et al. Constraints on the genesis of the Jiande polymetallic copper deposit in South China using fluid inclusion and O-H-Pb isotopes. J Geol Soc India 90, 546–557 (2017). https://doi.org/10.1007/s12594-017-0751-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-017-0751-3

Navigation