Skip to main content
Log in

Infinitely Many Solutions for a Nonlinear Elliptic PDE with Multiple Hardy–Sobolev Critical Exponents

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, by an approximating argument, we obtain two disjoint and infinite sets of solutions for the following elliptic equation with multiple Hardy–Sobolev critical exponents

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u=\mu \vert u \vert ^{2^{*}-2} u + \sum _{i=1}^{l} \frac{ \vert u \vert ^{2^{*}(s_{i})-2}u}{ \vert x \vert ^{s_{i}}}+ a(x) \vert u \vert ^{q-2} u &{} \; in \; \Omega , \\ u=0 &{} \; on \; \partial \Omega , \end{array}\right. \end{aligned}$$

where \(\Omega \) is a smooth bounded domain in \({\mathbb {R}}^{N}\) with \(0\in \partial \Omega \) and all the principle curvatures of \( \partial \Omega \) at 0 are negative, \(a \in {\mathcal {C}}^{1}({\bar{\Omega }}, \mathbb {R^{*}}^{+}),\) \( \mu > 0,\) \(0<s_{1}<s_{2}<...<s_{l}<2,\) \(1<q<2\) and \(N > 2\frac{q+1}{q -1}.\) By \(2^{*}:=\frac{2 N}{N-2}\) and \(2^{*}(s_{i}):=\frac{2 (N-s_{i})}{N-2}\) we denote the critical Sobolev exponent and Hardy–Sobolev exponents, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Lusternik-Schnirelman theory and non-linear eigenvalue problems. Math. Ann. 199, 55–72 (1972). https://doi.org/10.1007/BF01419576

    Article  MATH  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973). https://doi.org/10.1016/0022-1236(73)90051-7

    Article  MATH  Google Scholar 

  3. Azorero, J.G., Alonso, I.P.: Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term. Trans. Am. Math. Soc. 323, 877 (1991). https://doi.org/10.2307/2001562

    Article  MATH  Google Scholar 

  4. Bartsch, T., Willem, M.: On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 123, 3555–3555 (1995). https://doi.org/10.1090/s0002-9939-1995-1301008-2

    Article  MATH  Google Scholar 

  5. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983). https://doi.org/10.1002/cpa.3160360405

    Article  MATH  Google Scholar 

  6. Cao, D., Peng, S., Yan, S.: Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 262, 2861–2902 (2012). https://doi.org/10.1016/j.jfa.2012.01.006

    Article  MATH  Google Scholar 

  7. Cao, D., Yan, S.: Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential. Calc. Var. Partial Differ. Equ. 38, 471–501 (2010). https://doi.org/10.1007/s00526-009-0295-5

    Article  MATH  Google Scholar 

  8. Devillanova, G., Solimini, S.: Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Differ. Equations. 7, 1257–1280 (2002)

    Article  MATH  Google Scholar 

  9. Liu, Z., Han, P.: Infinitely many solutions for elliptic systems with critical exponents. J. Math. Anal. Appl. 353, 544–552 (2009). https://doi.org/10.1016/j.jmaa.2008.12.024

    Article  MATH  Google Scholar 

  10. Rabinowitz, P.H.: Variational Methods for Nonlinear Eigenvalue Problems, Eig. Non-Linear Probl. (2009) 139-195. https://doi.org/10.1007/978-3-642-10940-9_4

  11. Trudinger, N.: Remarks concerning the conformal deformation of riemannian structures on compact manifolds, Ann. Della Sc. Norm. Super. Di Pisa - Cl. Di Sci. 22 (1968) 265-274

  12. Willem, M.: Minimax Theorems, BirkhÃuser Boston, Boston, MA, 1996, 55-70. https://doi.org/10.1007/978-1-4612-4146-1

  13. Yan, S., Yang, J.: Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents. Calc. Var. Partial Differ. Equ. 48, 587–610 (2013). https://doi.org/10.1007/s00526-012-0563-7

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Bouabid.

Ethics declarations

Conflict of Interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouabid, K., Echarghaoui, R. Infinitely Many Solutions for a Nonlinear Elliptic PDE with Multiple Hardy–Sobolev Critical Exponents. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00629-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00629-y

Keywords

Navigation