Skip to main content
Log in

Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with time global behavior of solutions to nonlinear Schrödinger equation with a non-vanishing condition at the spatial infinity. Under a non-vanishing condition, it would be expected that the behavior is determined by the shape of the nonlinear term around the non-vanishing state. To observe this phenomenon, we introduce a generalized version of the Gross-Pitaevskii equation, which is a typical equation involving a non-vanishing condition, by modifying the shape of nonlinearity around the non-vanishing state. It turns out that, if the nonlinearity decays fast as a solution approaches to the non-vanishing state, then the equation admits a global solution which scatters to the non-vanishing element for both time directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The property that \(|f| \leqslant |g|\) a.e. implies \(\left\Vert f\right\Vert \leqslant \left\Vert g\right\Vert\).

References

  1. Bethuel, F., Saut, J.-C.: Travelling waves for the Gross-Pitaevskii equation. I, 0246-0211. Ann. Inst. H. Poincaré Phys. Théor. 70(2), 147–238 (1999) http://www.numdam.org/item?id=AIHPA_1999__70_2_147_0

  2. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation: 0022–1236. J. Funct. Anal. 100(1), 87–109 (1991). https://doi.org/10.1016/0022-1236(91)90103-C

    Article  MathSciNet  MATH  Google Scholar 

  3. Farina, A,. Saut., J.-C.: Stationary and time dependent Gross-Pitaevskii equations, 978-0-8218-4357-4, American Mathematical Society, Providence, RI, 473, Contemporary Mathematics, viii+180, (2008). https://doi.org/10.1090/conm/473

  4. Foschi, D.: Strichartz, Inhomogeneous, estimates,: 0219–8916. J. Hyperbolic Differ. Equ. 2(1), 1–24 (2005). https://doi.org/10.1142/S0219891605000361

    Article  MathSciNet  MATH  Google Scholar 

  5. Frisch, T., Pomeau, Y.: Transition to dissipation in a model of superflow. Phys. Rev. Lett. 69(11), 1644–1647 (1992). https://doi.org/10.1103/PhysRevLett.69.1644

    Article  Google Scholar 

  6. Clément, G.: The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity. Commun. Partial Differ. Equ. 33(4–6), 729–771 (2008). https://doi.org/10.1080/03605300802031614

    Article  MATH  Google Scholar 

  7. Gérard, P.: Cauchy, The, problem for the Gross-Pitaevskii equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5), 765–779 (2006). https://doi.org/10.1016/j.anihpc.2005.09.004

    Article  MathSciNet  MATH  Google Scholar 

  8. Gérard, P.: The Gross-Pitaevskii equation in the energy space. Station. Time Dependent Gross-Pitaevskii Equ. 473, 129–148 (2008). https://doi.org/10.1090/conm/473/09226

    Article  MathSciNet  MATH  Google Scholar 

  9. Ginibre, J., Ozawa, T., Velo, G.: On the existence of the wave operators for a class of nonlinear Schrödinger equations, 0246-0211. Ann. Inst. H. Poincaré Phys. Théor. 60(2), 211–239 (1994). http://www.numdam.org/item?id=AIHPA_1994__60_2_211_0

  10. Gross, E. P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4(2), 195–207 (1963). http://scitation.aip.org/content/aip/journal/jmp/4/2/10.1063/1.1703944,

  11. Gustafson, S., Nakanishi, K., Tsai, T.-P.: Scattering for the Gross-Pitaevskii equation. Math. Res. Lett. 13(2—-3), 273–285 (2006). https://doi.org/10.4310/MRL.2006.v13.n2.a8

    Article  MathSciNet  MATH  Google Scholar 

  12. Gustafson, S., Nakanishi, K., Tsai, T.-P.: Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions. Ann. Henri Poincaré 8(7), 1303–1331 (2007). https://doi.org/10.1007/s00023-007-0336-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Gustafson, S., Nakanishi, K., Tsai, T.-P.: Scattering theory for the Gross-Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11(4), 657–707 (2009). https://doi.org/10.1142/S0219199709003491

    Article  MathSciNet  MATH  Google Scholar 

  14. Kato, T.: Spectral and scattering theory and applications. Math. Soc. Japan, Tokyo Adv. Stud. Pure Math. An \(L^{q,r}\)-theory for nonlinear Schrödinger equations 23, 223–238 (1994)

  15. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math 46(4), 527–620 (1993). https://doi.org/10.1002/cpa.3160460405

    Article  MathSciNet  MATH  Google Scholar 

  16. Killip, R., Masaki, S., Murphy, J., Visan, M.: Large data mass-subcritical NLS: critical weighted bounds imply scattering, 1021-9722. NoDEA Nonlinear Differ. Equ. Appl. 24(4), Art. 38, 33 (2017). https://doi.org/10.1007/s00030-017-0463-9

  17. Killip, R., Oh, T., Pocovnicu, O., Vişan, M.: Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions. Math. Res. Lett. 19(5), 969–986 (2012). https://doi.org/10.4310/MRL.2012.v19.n5.a1

    Article  MathSciNet  MATH  Google Scholar 

  18. Koh, Y.: Improved inhomogeneous Strichartz estimates for the Schrödinger equation. J. Math. Anal. Appl. 373(1), 147–160 (2011). https://doi.org/10.1016/j.jmaa.2010.06.019

    Article  MathSciNet  MATH  Google Scholar 

  19. Masaki, S.: On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation. Comm. Partial Differential Equations 42(4), 626–653 (2017). https://doi.org/10.1080/03605302.2017.1286672

    Article  MathSciNet  MATH  Google Scholar 

  20. Masaki, S.: A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Commun. Pure. Appl. Anal 14(4), 1481–1531 (2015). https://doi.org/10.3934/cpaa.2015.14.1481

    Article  MathSciNet  MATH  Google Scholar 

  21. Masaki, S.: Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation (2016). arXiv:1605.09234

  22. Masaki, S., Segata, J.: On the well-posedness of the generalized Korteweg-de Vries equation in scale-critical \(\hat{L}{}^r\)-space. Anal. PDE 9(3), 699–725 (2016). https://doi.org/10.2140/apde.2016.9.699

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyazaki, H.: The derivation of the conservation law for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity. J. Math. Anal. Appl. 417(2), 580–600 (2014). https://doi.org/10.1016/j.jmaa.2014.03.055

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakamura, M., Ozawa, T.: Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations. Ann. Sc. Norm. Super. Pisa Cl. Sci 5(1, 2), 435–460 (2002)

    MATH  Google Scholar 

  25. Nakanishi, K., Ozawa, T.: Remarks on scattering for nonlinear Schrödinger equations. NoDEA Nonlinear Differ. Equ. Appl. 9(1), 45–68 (2002). https://doi.org/10.1007/s00030-002-8118-9

    Article  MATH  Google Scholar 

  26. Pitaevskii, L.P.: Vortex linex in an imperfect Bose gas. Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  27. Sulem, C., Sulem, P.-L.: The nonlinear Schrödinger equation,: 0–387-98611-1, Self-focusing and wave collapse, xvi+350, p. 139. Springer, New York, Applied Mathematical Sciences (1999)

  28. Vilela, M.C.: Inhomogeneous Strichartz estimates for the Schrödinger equation. Trans. Am. Math. Soc (electronic) 359(5), 2123–2136 (2007). https://doi.org/10.1090/S0002-9947-06-04099-2

    Article  MATH  Google Scholar 

  29. Zhidkov, P.E.: Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, 3-540-41833-4, vi+147, Springer, Berlin, Lecture Notes in Mathematics, 1756 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Miyazaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masaki, S., Miyazaki, H. Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation. Differ Equ Dyn Syst (2022). https://doi.org/10.1007/s12591-022-00609-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-022-00609-8

Keywords

Mathematics Subject Classification

Navigation