Skip to main content
Log in

Asymptotic behavior for a class of derivative nonlinear Schrödinger systems

  • Original Paper
  • Published:
SN Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

We consider the initial value problem for systems of derivative nonlinear Schrödinger equations with nonlinearity of the critical power in one and two space dimensions. Li–Sunagawa and Sakoda–Sunagawa introduced a sufficient condition, which is weaker than the so-called null condition, for the small data global existence of solutions. In this paper, we investigate the asymptotic behavior of global solutions under a condition related to the above one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. (1.2) in two space dimensions with the critical power \(p=2\) also does not satisfy the null condition, but it is out of consideration here, as the nonlinearity |u|u is not smooth.

  2. As it is apparent for \(d=1\), let \(d=2\). For \(\beta\) with \(|\beta |=l\), one can easily show that

    $$\begin{aligned}&\sum _{|\eta |\le l+1}\sum _{j=1}^L \left\{ \frac{\partial }{\partial Z_j^{(\eta )}} \left( \sum _{|\eta '|\le l}\sum _{j'=1}^L \frac{\partial G^{[\beta ]}}{\partial Z_{j'}^{(\eta ')}} Z_{j'}^{(\eta '+e_1)}\right) \right\} Z_j^{(\eta +e_2)}\\&\quad =\sum _{|\eta |\le l+1}\sum _{j=1}^L \left\{ \frac{\partial }{\partial Z_j^{(\eta )}} \left( \sum _{|\eta '|\le l}\sum _{j'=1}^L \frac{\partial G^{[\beta ]}}{\partial Z_{j'}^{(\eta ')}} Z_{j'}^{(\eta '+e_2)}\right) \right\} Z_j^{(\eta +e_1)}. \end{aligned}$$

    Using this formula, we can show the assertion immediately by induction with respect to \(|\beta |\).

  3. We remark that if \(F=F(u)\) and the null condition is satisfied, then \(F(u)=0\) as \(P(\xi , Y)=F(Y)\) by the definition. Hence non-trivial F satisfying the null condition must include \(\partial _x u\). When \((d, p)=(1,3)\) and \(N=1\), a simple example satisfying the null condition and (a) is \(F=u\partial _x\bigl (|u|^2\bigr )=|u|^2\partial _xu+u^2\overline{\partial _x u}\).

References

  1. Barab, J.E.: Nonexistence of asymptotically free solutions for nonlinear Schrödinger equations. J. Math. Phys. 25, 3270–3273 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernal-Vílchis, F., Hayashi, N., Naumkin, P.I.: Quadratic derivative nonlinear Schrödinger equations in two space dimensions. NoDEA Nonlinear Differ. Equ. Appl. 18, 329–355 (2011)

    Article  MATH  Google Scholar 

  3. Chihara, H.: Gain of regularity for semilinear Schrödinger equations. Math. Ann. 315, 529–567 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christodoulou, D.: Global solutions of nonlinear hyperbolic equations for small initial data. Commun. Pure Appl. Math. 39, 267–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colin, M., Colin, T.: On a quasilinear Zakharov system describing laser-plasma interactions. Differential Integral Equations 17, 297–330 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Doi, S.: On the Cauchy problem for Schrödinger type equations and the regularity of solutions. J. Math. Kyoto Univ. 34, 319–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ginibre, J., Ozawa, T.: Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension \(n\ge 2\). Commun. Math. Phys. 151, 619–645 (1993)

    Article  MATH  Google Scholar 

  8. Ginibre, J., Velo, G.: Long range scattering and modified wave operators for some Hartree type equations III, Gevrey spaces and low dimensions. J. Differ. Equ. 175, 415–501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayashi, N., Li, C., Naumkin, P.I.: On a system of nonlinear Schrödinger equations in \(2\)D. Differ. Integral Equ. 24, 417–434 (2011)

    MATH  Google Scholar 

  10. Hayashi, N., Li, C., Naumkin, P.I.: Modified wave operator for a system of nonlinear Schrödinger equations in \(2\)D. Commun. Partial Differ. Equ. 37, 947–968 (2012)

    Article  MATH  Google Scholar 

  11. Hayashi, N., Naumkin, P.I.: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Am. J. Math. 120, 369–389 (1998)

    Article  MATH  Google Scholar 

  12. Hayashi, N., Naumkin, P.I., Sunagawa, H.: On the Schrödinger equation with dissipative nonlinearities of derivative type. SIAM J. Math. Anal. 40, 278–291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ikeda, M., Katayama, S., Sunagawa, H.: Null structure in a system of quadratic derivative Schrödinger equations. Ann. Henri Poincaré 16, 535–567 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ikeda, M., Wakasugi, Y.: Small-data blow-up of \(L^2\)-solution for the nonlinear Schrödinger equation without gauge invariance. Differ. Integral Equ. 26, 1275–1285 (2013)

    MATH  Google Scholar 

  15. Katayama, S.: Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions. J. Hyperbolic Differ. Equ. 9, 263–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katayama, S.: Global Solutions and the Asymptotic Behavior for Nonlinear Wave Equations with Small Initial Data. MSJ Memoirs 36, Math. Soc. Japan, Tokyo (2017)

  17. Katayama, S.: Remarks on the asymptotic behavior of global solutions to systems of semilinear wave equations. In: Asymptotic Analysis for Nonlinear Dispersive and Wave Equations, pp. 55–84, Adv. Studies in Pure Math. 81, Math. Soc. Japan, Tokyo (2019)

  18. Katayama, S., Li, C., Sunagawa, H.: A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in \(2\)D. Differ. Integral Equ. 27, 301–312 (2014)

    MATH  Google Scholar 

  19. Katayama, S., Matoba, Y., Sunagawa, H.: Semilinear hyperbolic systems violating the null condition. Math. Ann. 31, 275–312 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Katayama, S., Matsumura, A., Sunagawa, H.: Energy decay for systems of semilinear wave equations with dissipative structure in two space dimensions. NoDEA Nonlinear Differ. Equ. Appl. 22, 601–628 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katayama, S., Murotani, D., Sunagawa, H.: The energy decay and asymptotics for a class of semilinear wave equations in two space dimensions. J. Evol. Equ. 12, 891–916 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katayama, S., Tsutsumi, Y.: Global existence of solutions for nonlinear Schrödinger equations in one space dimension. Commun. Partial Differ. Equ. 19, 1971–1997 (1994)

    Article  MATH  Google Scholar 

  23. Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, pp. 293–326, Lectures in Appl. Math. 23, AMS, Providence (1986)

  24. Kenig, C.E., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 255–288 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C.: Decay of solutions for a system of nonlinear Schrödinger equations in \(2\)D. Discrete Contin. Dyn. Syst. 32, 4265–4285 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, C., Sunagawa, H.: On Schrödinger systems with cubic dissipative nonlinearities of derivative type. Nonlinearity 29, 1537–1563; Corrigendum, ibid., C1–C2 (2016)

  27. Ozawa, T.: Long range scattering for nonlinear Schrödinger equations in one space dimension. Commun. Math. Phys. 139, 479–493 (1991)

    Article  MATH  Google Scholar 

  28. Sagawa, Y.: The lifespan of small solutions to a system of cubic nonlinear Schrödinger equations in one space dimension. SUT. J. Math. 54, 145–160 (2018)

    MATH  MathSciNet  Google Scholar 

  29. Sakoda, D., Sunagawa, H.: Small data global existence for a class of quadratic derivative nonlinear Schrödinger systems in two space dimensions. J, Differ. Equ. 268, 1722–1749 (2020)

    Article  MATH  Google Scholar 

  30. Shimomura, A.: Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities. Commun. Partial Differ. Equ. 31, 1407–1423 (2006)

    Article  MATH  Google Scholar 

  31. Strauss, W.A.: Nonlinear Wave Equations. CBMS Regonal Conference Series in Math. 73. AMS, Providence (1989)

  32. Tsutsumi, Y.: Global Existence and Asymptotic Behavior of Solutions for Nonlinear Schrödinger Equations. Doctoral Thesis, Univ. Tokyo (1985)

  33. Tsutsumi, Y.: The null gauge condition and the one-dimensional nonlinear Schrödinger equation with cubic nonlinearity. Indiana Univ. Math. J. 43, 241–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is partially supported by JSPS KAKENHI Grant No. 18H01128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichiro Katayama.

Additional information

This article is part of the section "Theory of PDEs" edited by Eduardo Teixeira.

Appendix: Improvement in the one space dimensional case

Appendix: Improvement in the one space dimensional case

Our aim in this appendix is to show the following improved version of Theorem 2.1 for one dimensional case.

Theorem 7.1

Let\(d=1\), \(p=3\), and each\(F_j\)be a homogeneous polynomial of degree\(p(=3)\)in\((u,\,\partial _x u,\,\overline{u},\,\overline{\partial _x u})\). Letsbe a positive integer. Assume the conditions (a) and (b) are satisfied. For any positive constants\(C_0\)and\(\delta\)with\(0<\delta <1/12\), there is a positive constant\(\varepsilon _0\)with the following property: If\(u\in C\bigl ([0,\infty ); \mathcal {H}^{s+2, 1}(\mathbb {R})\bigr )\)is a global solution to (1.1) satisfying (2.5), and if \(0<\varepsilon \le \varepsilon _0\), then there exists a\(\mathbb {C}^N\)-valued function\(\alpha ^+=(\alpha ^+_j(\xi ))_{j\in I_N}\)on\(\mathbb {R}\), satisfying

$$\begin{aligned} |\alpha ^+(\xi )| \le C\varepsilon \langle \xi \rangle ^{-(s+1)}, \quad \xi \in \mathbb {R}, \end{aligned}$$
(7.1)

as well as (2.9), such that we have (2.6) for\(|\beta |\le s+1\), where\(A^+=(A^+_j(t,\xi ))_{j\in I_N}\)is the global solution to the profile system (2.7).

Remark 7.1

It is clear that the conclusion of Theorem 2.2 is also true under the assumptions in Theorem 7.1. \(\square\)

Let \(d=1\) and each nonlinear term \(F_j\) be a homogeneous polynomial of degree 3. We can show Theorem 7.1 by following the proof of Theorem 2.1 if we use the next lemma instead of Lemma 3.3:

Lemma 7.1

Letlbe a positive integer. Suppose that the condition\((\mathbf {a})\)is satisfied. Then, for any multi-index\(\beta\)with\(|\beta |\le l+1\), we have

$$\begin{aligned}&\left\| \mathcal {F}_{m_j}\mathcal {U}_{m_j}^{-1} \partial _x^\beta F_j(u,\partial _x u)-\frac{(im_j \xi )^\beta }{t} P_j(\xi , A)\right\| _{L^\infty } \nonumber \\&\qquad \le Ct^{-\frac{5}{4}}\left( \sum _{|\gamma |\le 1} \Vert \mathcal {J}_{{\varvec{M}}}(t)^\gamma u(t)\Vert _{H^{l+1}}\right) ^3. \end{aligned}$$
(7.2)

Compared to Lemma 3.3, the improvement here is that (7.2) holds not only for \(|\beta |\le l\), but also for \(|\beta |=l+1\). To prove this lemma, we use the technique from [26], which is applicable to the cubic nonlinearity.

Lemma 7.2

Let\(m\in \mathbb {R}{\setminus }\{0\}\). Then we have

$$\begin{aligned} \left\| \mathcal {F}_m^{-1} \mathcal {U}_m(t)( \phi _1\phi _2\phi _3 )\right\| _{L^\infty (\mathbb {R})}\le C\Vert \phi _1\Vert _{L^\infty (\mathbb {R})}\Vert \phi _2\Vert _{L^2(\mathbb {R})}\Vert \phi _3\Vert _{L^2(\mathbb {R})}. \end{aligned}$$

Proof

Recall that \(\mathcal {M}_m^{\pm 1}\) is the multiplication by \(\psi _{\pm m}(t,x):=e^{\pm im\frac{x^2}{2t}}\). As \(\mathcal {W}_m^{-1}=\mathcal {F}_m \mathcal {M}_m^{-1}\mathcal {F}_m^{-1}\) and \(\Vert \mathcal {F}_m\psi _{-m}\Vert _{L^\infty }\le C\sqrt{t}\), we get

$$\begin{aligned} \Vert \mathcal {W}_m^{-1} \phi \Vert _{L^\infty }=C\Vert (\mathcal {F}_m \psi _{-m})*\phi \Vert _{L^\infty } \le C\Vert \mathcal {F}_m \psi _{-m}\Vert _{L^\infty }\Vert \phi \Vert _{L^1}\le C\sqrt{t}\Vert \phi \Vert _{L^1}. \end{aligned}$$

Writing \(\mathcal {F}_m^{-1}\mathcal {U}_m=\mathcal {W}_m^{-1}\mathcal {D}^{-1}\mathcal {M}_m^{-1}\), we obtain

$$\begin{aligned} \left\| \mathcal {F}_m^{-1} \mathcal {U}_m(\phi _1\phi _2\phi _3\bigr )\right\| _{L^\infty }&\le Ct^{\frac{1}{2}}\left\| \mathcal {D}^{-1}\mathcal {M}_m^{-1}(\phi _1\phi _2\phi _3)\right\| _{L^1}\\&\le Ct^{-\frac{1}{2}}\left\| (\mathcal {D}^{-1}\phi _1)(\mathcal {D}^{-1}\phi _2)(\mathcal {D}^{-1} \phi _3)\right\| _{L^1}\\&\le Ct^{-\frac{1}{2}}\Vert \mathcal {D}^{-1}\phi _1\Vert _{L^\infty }\Vert \mathcal {D}^{-1}\phi _2\Vert _{L^2}\Vert \mathcal {D}^{-1}\phi _3\Vert _{L^2}\\&\le C\Vert \phi _1\Vert _{L^\infty }\Vert \phi _2\Vert _{L^2}\Vert \phi _3\Vert _{L^2}, \end{aligned}$$

which is the desired result. \(\square\)

Lemma 7.3

Let\(m, \nu , \mu _1, \ldots , \mu _L \in \mathbb {R}{\setminus }\{0\}\), and let\(H=H(Z)\)be a homogeneous polynomial of degree 2 in\(Z=(Z_j)_{j\in I_L}\in \mathbb {C}^L\). Suppose that we have

$$\begin{aligned} H(e^{i{\varvec{\mu }}\theta } Z)e^{i\nu \theta }=e^{im\theta } H(Z),\quad Z\in \mathbb {C}^L,\ \theta \in \mathbb {R}, \end{aligned}$$

where\({\varvec{\mu }}={\mathrm {diag}\,}(\mu _1, \ldots , \mu _L)\). We put\(B=\mathcal {F}_{{\varvec{\mu }}}\mathcal {U}_{{\varvec{\mu }}}^{-1} v\)and\(B_0=\mathcal {F}_{\nu }\mathcal {U}_{\nu }^{-1} w\). Then, for a\(\mathbb {C}^L\)-valued functionvand a\(\mathbb {C}\)-valued functionwon\(\mathbb {R}\), we have

$$\begin{aligned}&\left\| \mathcal {F}_m\mathcal {U}_m(t)^{-1}\partial _x \bigl (H(v)w\bigr )-\frac{im\xi }{t}H(B)B_0\right\| _{L^\infty }\\&\quad \le Ct^{-\frac{5}{4}} \left\{ \sum _{|\gamma |\le 1} \bigl (\Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v(t)\Vert _{H^1}+\Vert \mathcal {J}_\nu ^\gamma w(t)\Vert _{L^2}\bigr )\right\} ^3. \end{aligned}$$

Proof

By the assumption, H(Z) consists of \(Z_jZ_k\) with \(\mu _j+\mu _k=m-\nu\). Hence we let \(\mu _j+\mu _k=m-\nu\) in the sequel. By direct calculations, we have

$$\begin{aligned} \partial _x\bigl (v_jv_k w\bigr )=\frac{m}{\mu _k} \bigl (v_j (\partial _x v_k) w \bigr )+\frac{m}{it} \left\{ \mathcal {J}_m\bigl (v_jv_kw\bigr )-v_j (\mathcal {J}_{\mu _k} v_k)w\right\} . \end{aligned}$$

Since

$$\begin{aligned} (e^{i\mu _j\theta } v_j)(e^{i\mu _k\theta }\partial _x v_k)(e^{i\nu \theta }w)=e^{im\theta }\bigl (v_j(\partial _x v_k)w\bigr ), \end{aligned}$$

we can use Lemma 3.6 to obtain

$$\begin{aligned}&\left\| \mathcal {F}_m\mathcal {U}_m^{-1}\bigl (v_j (\partial _x v_k) w \bigr )-\frac{i\mu _k\xi }{t}B_jB_k B_0\right\| _{L^\infty }\\&\quad \le Ct^{-\frac{5}{4}} \left\{ \sum _{|\gamma |\le 1} \bigl (\Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v(t)\Vert _{H^1}+\Vert \mathcal {J}_\nu ^\gamma w(t)\Vert _{L^2}\bigr )\right\} ^3. \end{aligned}$$

As \(\mathcal {J}_m=(it/m)\mathcal {M}_m\partial _x\mathcal {M}_m^{-1}\), we have

$$\begin{aligned} \mathcal {J}_m\bigl (v_jv_kw\bigr ) =\frac{\mu _j}{m}(\mathcal {J}_{\mu _j}v_j)v_k w+\frac{\mu _k}{m}v_j(\mathcal {J}_{\mu _k}v_k)w +\frac{\nu }{m}v_jv_k(\mathcal {J}_\nu w). \end{aligned}$$

Lemma 7.2 yields

$$\begin{aligned}&\left\| \mathcal {F}_m\mathcal {U}_m^{-1}\left\{ \mathcal {J}_m\bigl (v_jv_kw\bigr )-v_j (\mathcal {J}_{\mu _k} v_k)w\right\} \right\| _{L^\infty }\\&\quad \le C\Vert v\Vert _{L^\infty }\left( \sum _{|\gamma |\le 1}\Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v\Vert _{L^2}\right) \left( \sum _{|\gamma |\le 1} \Vert \mathcal {J}_\nu ^\gamma w\Vert _{L^2}\right) \\&\quad \le Ct^{-\frac{1}{2}}\left( \sum _{|\gamma |\le 1}\Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v\Vert _{L^2}\right) ^2\left( \sum _{|\gamma |\le 1} \Vert \mathcal {J}_\nu ^\gamma w\Vert _{L^2}\right) , \end{aligned}$$

as the identity \(\partial _x(\mathcal {M}_{\mu _j}^{-1}\phi )=-(i\mu _j/t)\mathcal {J}_{\mu _j}\phi\) implies

$$\begin{aligned} \Vert \phi \Vert _{L^\infty }&=\Vert \mathcal {M}_{\mu _j}^{-1} \phi \Vert _{L^\infty } \le \Vert \mathcal {M}_{\mu _j}^{-1}\phi \Vert _{L^2}^{\frac{1}{2}}\Vert \partial _x(\mathcal {M}_{\mu _j}^{-1}\phi )\Vert _{L^2}^{\frac{1}{2}} \le \sqrt{\frac{|\mu _j|}{t}}\Vert \phi \Vert _{L^2}^{\frac{1}{2}}\Vert \mathcal {J}_{\mu _j}\phi \Vert _{L^2}^{\frac{1}{2}}. \end{aligned}$$

To sum up, we obtain

$$\begin{aligned}&\left\| \mathcal {F}_m\mathcal {U}_m^{-1}\partial _x(v_j v_k w \bigr )-\frac{im\xi }{t}B_jB_k B_0\right\| \\&\qquad \le Ct^{-\frac{5}{4}} \left\{ \sum _{|\gamma |\le 1} \bigl (\Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v(t)\Vert _{H^1}+\Vert \mathcal {J}_\nu ^\gamma w(t)\Vert _{L^2}\bigr )\right\} ^3, \end{aligned}$$

which implies the desired result. \(\square\)

The main ingredient in Lemma 7.3 is that we do not need \(\Vert \mathcal {J}_\nu w\Vert _{H^1}\) in the estimate.

Let G, v, B be as in Sect. 3.2. Then Corollary 3.1 is replaced by the following.

Corollary 7.1

For a positive integerl, we have

$$\begin{aligned}&\left\| \mathcal {F}_m \mathcal {U}_m^{-1}\partial _x^{l+1} G\bigl (v(t)\bigr )-\frac{(im\xi )^{l+1}}{t} G\bigl (B(t)\bigr )\right\| _{L^\infty (\mathbb {R})}\\&\qquad \le Ct^{-\frac{5}{4}}\left( \sum _{|\gamma |\le 1} \Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v(t) \Vert _{H^l(\mathbb {R})} \right) ^3. \end{aligned}$$

Proof

Recall the definition of \(G^{[l]}\) in Sect. 3.2, and observe that terms involving \(Z^{(l)}\) in \(G^{[l]}\bigl ((Z^{(\gamma )})_{0\le \gamma \le l})\) are \(\sum _{j=1}^L \partial _{Z_j} G(Z) Z_j^{(l)}\). We put

$$\begin{aligned} \widetilde{G}^{[l]}\bigl ((Z^{(\gamma )})_{0\le \gamma \le l-1}\bigr ): =G^{[l]}\bigl ((Z^{(\gamma )})_{0\le \gamma \le l}\bigr )-\sum _{j=1}^L \frac{\partial G}{\partial Z_j}(Z) Z_j^{(l)} \end{aligned}$$

Then, since we have

$$\begin{aligned} \widetilde{G}^{[l]}\bigl ((e^{i{\varvec{\mu }}\theta }Z^{(\gamma )})_{0\le \gamma \le l-1}\bigr )=e^{im\theta } \widetilde{G}^{[l]}\bigl ((Z^{(\gamma )})_{0\le \gamma \le l-1}\bigr ), \end{aligned}$$

we can use Corollary 3.1 to get

$$\begin{aligned}&\left\| \mathcal {F}_m\mathcal {U}_m^{-1}\partial _x \widetilde{G}^{[l]}\bigl ((v^{(\gamma )})_{0\le \gamma \le l-1}\bigr ) -\frac{im\xi }{t}\widetilde{G}^{[l]}\left( \bigl ( (i{\varvec{\mu }})^{|\gamma |}\xi ^\gamma B\bigr )_{0\le \gamma \le l-1} \right) \right\| _{L^\infty }\\&\qquad \le Ct^{-\frac{5}{4}}\left( \sum _{|\gamma |\le 1} \Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v(t)\Vert _{H^l}\right) ^3. \end{aligned}$$

Using Lemma 7.3 with \(H=\partial _{Z_j}G\) and \(w=v_j^{(l)}\), we find

$$\begin{aligned}&\left\| \mathcal {F}_m\mathcal {U}_m^{-1}\partial _x \sum _{j=1}^L \frac{\partial G}{\partial Z_j}(v)v_j^{(l)}-\frac{im\xi }{t}\sum _{j=1}^L \frac{\partial G}{\partial Z_j}(B)(im_j\xi )^l B_j \right\| _{L^\infty }\\&\qquad \le Ct^{-\frac{5}{4}}\left( \sum _{|\gamma |\le 1} \Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v(t)\Vert _{H^l}\right) ^3. \end{aligned}$$

Therefore we have

$$\begin{aligned}&\left\| \mathcal {F}_m\mathcal {U}_m^{-1}\partial _x G^{[l]}\bigl ((v^{(\gamma )})_{0\le \gamma \le l}\bigr ) -\frac{im\xi }{t}G^{[l]}\left( \bigl ( (i{\varvec{\mu }})^{|\gamma |}\xi ^\gamma B\bigr )_{0\le \gamma \le l}\right) \right\| _{L^\infty }\\&\qquad \le Ct^{-\frac{5}{4}}\left( \sum _{|\gamma |\le 1} \Vert \mathcal {J}_{{\varvec{\mu }}}^\gamma v(t)\Vert _{H^l}\right) ^3, \end{aligned}$$

which leads to the desired result thanks to (3.13) and Lemma 3.5. \(\square\)

Using this corollary, we immediately obtain Lemma 7.1, and then Theorem 7.1, in a similar fashion to Remark 5.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katayama, S., Sakoda, D. Asymptotic behavior for a class of derivative nonlinear Schrödinger systems. SN Partial Differ. Equ. Appl. 1, 12 (2020). https://doi.org/10.1007/s42985-020-00012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-020-00012-4

Keywords

Mathematics Subject Classification

Navigation