Skip to main content
Log in

Thermal and flammable stability of radiated LDPE and composites

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

The thermal decomposition and flame-retardant physical characteristics of specimens are explained via the limiting oxygen index (LOI), cone calorimeter, smoke density, and thermogravimetry analysis (TGA) tests. The outcomes of TGA, smoke emission, and LOI tests showed that thermal strength and flame-retardant characteristics of the specimens containing magnesium hydroxide (MH) have superior thermal strength compared with the similar specimens containing alumina trihydrate (ATH). The flame-retardant characteristics and thermal strength of specimens were boosted upon radiation and the development of cross-linking bonds in the polymer structure. The smoke density tester results present that MH specimens generate the least smoke density associated with the pristine low-density polyethylene and the similar ATH specimens. This study proved that the inclusion of MH and radiation of specimens generated greater thermal strength and flame-retardant characteristics compared with the inclusion of ATH to radiated specimens. These successes are right and proper for cable companies to deliver halogen-free flame-retardant cable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feng Z, Jun Z, Dao-Xing S (2009) Study on thermal breakdown of intumescent fire-retardant polypropylene by TG/Fourier transform infrared. J Thermoplast Compos Mater 22:681–701

    Article  Google Scholar 

  2. Sabet M, Soleimani H (2017) The impact of electron beam radiation on low density polyethylene and ethylene vinyl acetate. IOP Conf Ser Mater Sci Eng 204(1):012005

    Article  Google Scholar 

  3. Isitman NA, Kaynak C (2012) Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low-density polyethylene. J Fire Sci 31:73–84

    Article  Google Scholar 

  4. Dasari A, Yu Z, Cai G et al (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387

    Article  CAS  Google Scholar 

  5. AWC, Morgan AB (2009) Fire retardancy of polymeric materials. CRC Press, Boca Raton

    Google Scholar 

  6. Zhang J, Bai M, Wang Y et al (2012) Featured structures of fire residue of high-impact polystyrene/organically modified montmorillonite nanocomposites during combustion. Fire Mater 36:661–670

    Article  CAS  Google Scholar 

  7. Yan L, Xu Z, Liu Y (2014) Effect of fire residue structure on flame retardancy of HIPS/silica nanocomposites. In: 7th international conference on intelligent computation technology and automation (ICICTA), Changsha China, 25–26, 2014

  8. Sabet M, Hassan A, Thevy Ratnam C (2015) Characteristics of ethylene-vinyl acetate filled with metal hydroxide. J Elastomers Plast 47:88–100

    Article  CAS  Google Scholar 

  9. Feldman D (2016) Polyolefin, olefin copolymers and polyolefin polyblend nanocomposites. J Macromol Sci Part A 53(10):651–658

    Article  CAS  Google Scholar 

  10. Stan F, Stanciu NV, Fetecau C (2017) Melt rheological characteristics of ethylene-vinyl acetate/multi-walled carbon nanotube composites. Compos B Eng 110:20–31

    Article  CAS  Google Scholar 

  11. Xu ZS, Yan L, Chen L (2016) Synergistic flame retardant effects between aluminum hydroxide and halogen-free flame retardants in high density polyethylene composites. Procedia Eng 135:631–636

    Article  Google Scholar 

  12. Oladele IO, Olajide JL, Agbabiaka OG (2015) Tensile characteristics and fractographic analysis of low density polyethylene composites reinforced with chemically modified keratin-based biofibres. J Miner Mater Charact Eng 3:344–352

    CAS  Google Scholar 

  13. Zhou S, Ning M, Wang X (2015) The influence of c-radiation on the mechanical, thermal decomposition, and flame retardant characteristics of EVA/LDPE/ATH blends. Therm Anal Calorim 119:167–173

    Article  CAS  Google Scholar 

  14. Pan Y, Han L, Guo Z, Fang Z (2017) Improving the flame-retardant efficiency of aluminum hydroxide with fullerene for high-density polyethylene. J Appl Polym 134:9

    Article  Google Scholar 

  15. Entezam M, Aghjeh MKR, Ghaffari M (2017) Electron-beam radiation induced compatibilization of immiscible polyethylene/ethylene vinyl acetate (PE/EVA) blends: mechanical characteristics and morphology. Radiat Phys Chem 131:22–27

    Article  CAS  Google Scholar 

  16. Bee ST, Hassan A, Ratnam CT, Tee TT (2013) Investigation of nano-size montmorillonite on electron-beam radiated flame retardant polyethylene and ethylene vinyl acetate blends. Nucl Instrum Methods Phys Res Sect B 299(15):42–50

    Article  CAS  Google Scholar 

  17. Han Z, Wang Y, Dong W, Wang P (2014) Enhanced fire retardancy of polyethylene/alumina trihydrate composites by graphene nanoplatelets. Mater Lett 128:275–278

    Article  CAS  Google Scholar 

  18. Lenża J, Sozańska M, Rydarowski H (2015) Methods for limiting the flammability of high-density polyethylene (PE-HD) applying magnesium hydroxide (MDH) with the assessment of its mechanical characteristics. In: Tiwari A, Raj B (eds) Reactions and mechanisms in thermal analysis of advanced materials. Wiley, Hoboken, pp 85–101

    Chapter  Google Scholar 

  19. Bee ST, Sin LT, Ratnam CT, Kavee-Raaz RRD (2015) Electron-beam radiation enhanced of Hibiscus cannabinus fiber strengthen polylactic acid composites. Compos B Eng 79:35–46

    Article  CAS  Google Scholar 

  20. Sharma BK, Chowdhury SR (2014) Influence of electron-beam treatment on the crystallization and thermal strength of LDPE/EPDM blends. Am J Eng Appl Sci 7(3):338–352

    Article  Google Scholar 

  21. Chowdhury SR, Sharma BK, Mahanwar PA (2015) Tensile, flexural and morphological characteristics of electron-beam-cross-linked LDPE–EPDM blends. Plast Rubber Compos 44(10):440–448

    Article  Google Scholar 

  22. Bee ST, Sin LT, Ratnam CT, Haraveen KJS (2015) Investigation of the interaction of copper(II) oxide and electron-beam radiation cross-linkable, polyethylene. Nucl Instrum Methods Phys Res Sect B 360:36–45

    Article  CAS  Google Scholar 

  23. Chowdhury SR, Sharma BK (2016) Vinyl acetate content and electron-beam radiation directed alteration of structure, morphology, and associated characteristics of EVA/EPDM blends. J Appl Polym 133:21

    Google Scholar 

  24. Wang L, Zhang M, Li B (2016) Thermal analysis and flame-retarded mechanism of composites composed of ethylene vinyl acetate and layered double hydroxides containing. Appl Sci 6(5):1–12

    Article  Google Scholar 

  25. Yilmaz MC, Ezdesir A, Ulutan S (2013) Production of a polymeric composite material filled with halogen-free flame retardant. Polym Polym Compos 21(3):133–138

    CAS  Google Scholar 

  26. Qian Y, Zhu X, Li S, Chen X (2016) Flame-retardant characteristics of ethylene-vinyl acetate/oil sludge/fumed silica composites. RCS Adv 6:63091–63098

    CAS  Google Scholar 

  27. Sabet M, Soleimani H, Seyednooroldin S (2016) Characteristics and characterization of ethylene-vinyl acetate filled with carbon nanotube. Polym Bull 73(2):419–434

    Article  CAS  Google Scholar 

  28. Qian Y, Zhou S, Chen X (2016) Flammability and thermal decomposition behavior of ethylene-vinyl acetate/layered double hydroxides/zinc borate composites. Polym Adv Technol 28:353–361

    Article  Google Scholar 

  29. Sabet M, Soleimani H, Seyednooroldin H (2016) Preparation and characterization of LDPE/CNT. Int J Adv Sci Eng Technol 4(2):154–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziyar Sabet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabet, M., Soleimani, H. & Hosseini, S. Thermal and flammable stability of radiated LDPE and composites. Int J Plast Technol 23, 239–245 (2019). https://doi.org/10.1007/s12588-019-09255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-019-09255-2

Keywords

Navigation