Skip to main content
Log in

Site-specific tunable drug release from biocompatible tragacanth-cl-polyacrylamide polymer networks

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

In present study, tragacanth gum-based pH-responsive tunable drug delivery devices have been synthesized. The relation between synthetic reaction parameters during polymerization reaction and swelling and drug release from polymers has also been studied. Polymers were characterized by FTIR, blood compatibility and swelling studies. Swelling of TG-cl-poly(AAm) polymers decreased with an increase in feed monomer [AAm] and cross-linker [NN-MBA] concentration. Polymer showed pH-responsive swelling nature as swelling increased with an increase in pH of solution. The swelling and drug release occurred through non-Fickian diffusion mechanism and release profile obey Korsmeyer–Peppas model of drug release. There is no rapid increase in drug release rate from drug-loaded polymers which is a required characteristic for controlled drug delivery system. TG-cl-poly(AAm) polymers are found to be non-thrombogenic, haemo-compatible during blood-compatibility studies. These polysaccharide based polymers can be tailored for developing site-specific biocompatible delivery devices to enhance local and systemic bioavailability of loaded curative agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sharma K, Kumar V, Chaudhary B, Kaith BS, Kalia S, Swart HC (2016) Application of biodegradable superabsorbent hydrogel composite based on Gum ghatti-co-poly(acrylic acid-aniline) for controlled drug delivery. Polym Degrad Stab 124:101–111

    Article  CAS  Google Scholar 

  2. Shi Y, Liu Z, Yang Y, Xu X, Li Y, Li T (2017) Design of poly(mPEGMA-co-MAA) hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2017.03.163

    Article  Google Scholar 

  3. Xu J, Strandman S, Zhu JXX, Barralet J, Cerruti M (2015) Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37:395–404

    Article  CAS  Google Scholar 

  4. Sood S, Gupta VK, Agarwal S, Dev K, Pathania D (2017) Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(itaconic acid-co-lactic acid) hydrogel. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.03.103

    Article  PubMed  Google Scholar 

  5. Rakkappan C, Anbalagan S (2009) Ultrasonic and FTIR studies on aqueous biodegradable polymer blend solutions. Am-Eurasian J Sci Res 4(4):281–284

    CAS  Google Scholar 

  6. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  7. Lee JW, Park JH, Robinson JR (2000) Bioadhesive-based dosage forms: the next generation. J Pharm Sci 89:850–866

    Article  CAS  Google Scholar 

  8. Chourasia MK, Jain SK (2004) Design and development of multiparticulate system for targeted drug delivery to colon. Drug Deliv 11:201–207

    Article  CAS  Google Scholar 

  9. Shukla RK, Tiwari A (2012) Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohyd Polym 88:399–416

    Article  CAS  Google Scholar 

  10. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  CAS  Google Scholar 

  11. Knuth K, Amiji M, Robinson JR (1993) Hydrogel delivery systems for vaginal and oral applications: Formulation and biological considerations. Adv Drug Deliv Rev 11(1–2):137–167

    Article  Google Scholar 

  12. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  Google Scholar 

  13. Caykara T, Birlik G, Izol D (2007) Reentrant phase transition and network parameters of hydrophobically modified poly[2-(diethylamino)ethylmethacrylate-co-N-vinyl-2-pyrrolidone/octadecyl acrylate] hydrogels. Eur Polym J 43:514–521

    Article  CAS  Google Scholar 

  14. Andeson DMW, Grant DAD (1988) The chemical characterization of some Astragalus gum exudates. Food Hydrocolloids 2(5):417–423

    Article  Google Scholar 

  15. Weiping W (2000) Tragacanth and karaya. In: Philips GO, Williams PA (eds) Handbook of hydrocolloids. Chapter 13. Woodhead, Cambridge, pp 231–245

    Google Scholar 

  16. Davidson RL (1980) Handbook of water soluble gums and resins. McGraw Hill Inc., New York

    Google Scholar 

  17. Tischer CA, Iacomini M, Gorin PAJ (2002) Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer). Carbohyd Res 337:1647–1655

    Article  CAS  Google Scholar 

  18. Singh B (2007) Psyllium as therapeutic and drug delivery agent. Int J Pharm 334:1–14

    Article  CAS  Google Scholar 

  19. Peppas NA, Korsmeyer RW (1987) Dynamically swelling hydrogels in controlled release applications. In: Peppas NA (ed) Hydrogels in medicines and pharmacy, vol III. Properties and applications. CRC Press Inc., Boca Raton, pp 118–121

    Google Scholar 

  20. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controlled Release 5:23–36

    Article  CAS  Google Scholar 

  21. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from swellable devices. J Controlled Release 5:37–42

    Article  CAS  Google Scholar 

  22. Labarre D (2001) Improving blood compatibility of polymeric surfaces. Trends Biomater Artif Organs 15:1–3

    Google Scholar 

  23. American Society for Testing and Materials (2000) ASTM F 756-00: standard practices for assessment of haemolytic properties of materials, Philadelphia

  24. Singh B, Sharma V (2014) Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohyd Polym 101:928–940

    Article  CAS  Google Scholar 

  25. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398

    CAS  Google Scholar 

  26. Yazdani-Pedram M, Retuert J, Quijada R (2010) Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol Chem Phys 201(9):923–930

    Article  Google Scholar 

  27. Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363–1370

    Article  CAS  Google Scholar 

  28. Bajpai AK, Giri A (2003) Water sorption behaviour of highly swelling (carboxymethylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohyd Polym 53:271–279

    Article  CAS  Google Scholar 

  29. Pourjavadi A, Mahdavinia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turk J Chem 30:595–608

    CAS  Google Scholar 

  30. Bajpai AK, Giri A (2002) Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 53:125–141

    Article  CAS  Google Scholar 

  31. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohyd Polym 66:386–395

    Article  CAS  Google Scholar 

  32. Mishra A, Clark JH, Pal S (2008) Modification of Okra mucilage with acrylamide: synthesis, characterization and swelling behavior. Carbohyd Polym 72:608–615

    Article  CAS  Google Scholar 

  33. Xu Q, Huang W, Jiang L, Lei Z, Li X, Deng H (2013) KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release. Carbohyd Polym 97:565–570

    Article  CAS  Google Scholar 

  34. Quintero SMM, Ponce FRV, Cremona M, Triques ALC, Almeida AR, Braga AMB (2010) Swelling and morphological properties of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) hydrogels in solution with high salt concentration. Polymer 51:953–958

    Article  CAS  Google Scholar 

  35. Liu LS, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24:3333–3343

    Article  CAS  Google Scholar 

  36. Clausen AE, Bernkop-Schnürch A (2001) Direct compressible polymethacrylic acid-starch compositions for site-specific drug delivery. J Controlled Release 75(1–2):93–102

    Article  CAS  Google Scholar 

  37. dos Santos KSCR, Coelho JFJ, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI, Higa OZ, Gil MH (2006) Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. Int J Pharm 310:37–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikrant Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Devi, J. Site-specific tunable drug release from biocompatible tragacanth-cl-polyacrylamide polymer networks. Int J Plast Technol 22, 291–311 (2018). https://doi.org/10.1007/s12588-018-9218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-018-9218-7

Keywords

Navigation