Skip to main content
Log in

Thermal and X-ray diffraction studies on interpenetrating polymer networks of castor oil-based polyurethane and diazotized cardanol-based homopolymers

  • Research Article
  • Published:
International Journal of Plastics Technology

Abstract

Cardanol, the meta-substituted phenol, is subjected to diazotization with p-chloroaniline to get diazotized p-chloroaniline cardanol dye. We report a series of interpenetrating polymer networks (IPNs) synthesized by condensing polyurethane of castor oil with diazotized p-chloroaniline cardanol–furfural as homopolymer using ethylene glycol dimethacrylate as cross-linker and benzoyl peroxide as an initiator. Synthesized IPNs were characterized by Fourier transform infrared spectroscopy. The thermal behaviour of IPNs was studied by thermogravimetric analysis and differential thermal analysis, and the kinetic parameters such as activation energy (Ea) and regression coefficient (R2) of reaction were calculated by using the Coats–Redfern method. The morphology was studied by XRD studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Barrett LW, Sperling LH, Murphy CJ (1993) Naturally functionalized triglyceride oils in interpenetrating polymer networks. J Am Oil Chem Soc 70:523–534

    Article  CAS  Google Scholar 

  2. Guo A, Demydov D, Zhang W, Petrovic ZS (2002) Polyols and polyurethanes from hydroformylation of soybean oil. J Polym Environ 10:49–52

    Article  CAS  Google Scholar 

  3. Kong X, Narine SS (2007) Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromol 8:2203–2209

    Article  CAS  Google Scholar 

  4. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: II. Foams. J Am Oil Chem Soc 84:65–72

    Article  CAS  Google Scholar 

  5. Petrovic ZS, Zhang W, Javni I (2005) Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6:713–719

    Article  CAS  Google Scholar 

  6. Roloff T, Erkens U, Hofer R (2005) Polyols based on renewable feedstocks: a significant alternative. Urethanes Technol 22:29–33

    Google Scholar 

  7. Zlatanic A, Petrovic ZS, Dusek K (2002) Structure and properties of triolein-based polyurethane networks. Biomacromolecules 3:1048–1056

    Article  CAS  Google Scholar 

  8. Sperling LH (1981) Interpenetrating polymer networks and related materials. Plenum Press, New York

    Book  Google Scholar 

  9. Yenwo GM et al (1977) Castor-oil-based interpenetrating polymer networks: synthesis and characterization. J Appl Polym Sci 21:1531–1541

    Article  CAS  Google Scholar 

  10. Sperling LH, Manson JA (1983) Interpenetrating polymer networks from triglyceride oils containing special functional groups: a brief review. J Am Oil Chem Soc 60:1887–1892

    Article  CAS  Google Scholar 

  11. Devia N, Manson JA, Sperling LH, Conde A (1979) Simultaneous interpenetrating networks based on castor oil elastomers and polystyrene. 2. Synthesis and systems characteristics. Macromolecules 12:360–369

    Article  CAS  Google Scholar 

  12. Alekseeva T, Lipatov Y, Grihchuk S, Babkina N (2004) Reactive compatibilization in phase separated interpenetrating polymer networks. Macromol Symp 210:291–299

    Article  CAS  Google Scholar 

  13. Lipatov Y, Alekseeva T (2007) Phase-separated interpenetrating polymer networks. Adv Polym Sci 208:227

    Google Scholar 

  14. Praharaj D, Pal NC, Patra S, Lenka SJ (2004) Plast. Technol. 8(1):172–179

    CAS  Google Scholar 

  15. Nayak RR, Ray G, Guru BN, Lenka S (2004) Comparative studies of interpenetrating polymer networks derived from soybean oil-based polyurethane and cardanol m-aminophenol dye. Polym Plast Technol Eng 43:261–272

    Article  CAS  Google Scholar 

  16. Nayak RR, Ray G, Lenka S (2009) Thermal and x-ray diffraction studies on interpenetrating polymer networks of soybean oil-based polyurethane and cardanol-based dye. Polym Plast Technol Eng 48:503–508

    Article  CAS  Google Scholar 

  17. Liaw DJ (1997) The relative physical and thermal properties of polyurethane elastomers: effect of chain extenders of bisphenols, diisocyanate, and polyol structures. J Appl Polym Sci 66:1251–1265

    Article  CAS  Google Scholar 

  18. Liaw DJ, Huang CC, Liaw BY (1998) Synthesis and properties of polyurethanes based on bisphenol-S derivatives. Polymer 39:3529–3539

    Article  CAS  Google Scholar 

  19. Kumar PP et al (2002) Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid. J Agric Food Chem 50(16):4705–4708

    Article  CAS  Google Scholar 

  20. Suwanprasop S et al (2004) Petroleum marker dyes synthesized from cardanol and aniline derivatives. Ind Eng Chem Res 43(17):4973–4978

    Article  CAS  Google Scholar 

  21. Praharaj D, Pal NC, Patra S, Lenka S (2004) Int J Plast Technol 8:172–179

    CAS  Google Scholar 

  22. Biswal S, Achary PGR, Mohanty N, Pal NC (2011) Interpenetrating polymer networks derived from cardanol based dyes and polyol modified castor oil based polyurethanes. Int J Plast Technol 15:52–67

    Article  CAS  Google Scholar 

  23. Agarwal AM, Manek RV, Kolling WM, Neau SH (2003) AAPS Pharma Sci Tech 4:E60

    Google Scholar 

  24. Segal LC, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  25. Reddy N, Yang Y (2005) Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46:5494–5500

    Article  CAS  Google Scholar 

  26. Maqueda LAP, Jimener PES, Criado JM (2005) Evaluation of the integral methods for the kinetic study of thermally stimulated processes in polymer science. Polymer 46:2950–2954

    Article  Google Scholar 

  27. Liu N, Chen H, Shu L, Statheropoulous M (2005) Error evaluation of integral methods by consideration on the approximation of temperature integral. J Therm Anal Calorim 81:99–105

    Article  CAS  Google Scholar 

  28. Ortega A, Maqueda LAP, Craido JM (1996) A new point of view on the evaluation of the temperature integral. Thermochim Acta 282(283):29–34

    Article  Google Scholar 

  29. Galwey AK (2003) Perennial problems and promising prospects in the kinetic analysis of nonisothermal rate data. Thermochim Acta 407:93–103

    Article  CAS  Google Scholar 

  30. Nayak RR, Ray G, Guru BN, Lenka S (2004) Comparative studies of interpenetrating polymer networks derived from soybean oil-based polyurethane and cardanol m-aminophenol dye. Polym Plast Technol Eng 43:261–272

    Article  CAS  Google Scholar 

  31. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  32. Anderson DA, Freeman ES (1961) The kinetics of the thermal degradation of polystyrene and polyethylene. J Polym Sci 54:253–260

    Article  CAS  Google Scholar 

  33. Nair CGR, Madhusudhanan PM (1976) Thermal decomposition studies VIII. A dynamic-thermogravimetric study of the mechanism of deamination of some transition metal complexes. Thermochim Acta 14:373–382

    Article  CAS  Google Scholar 

  34. Athawale V, Kolekar S (2011) Comparative studies of castor and hydrogenated castor oil urethane/PMMA semi and full IPNs. J Macromol Sci A 35(12):1929–1940

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Jebastin Andrews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebastin Andrews, S.G., Mythili, C.V. Thermal and X-ray diffraction studies on interpenetrating polymer networks of castor oil-based polyurethane and diazotized cardanol-based homopolymers. Int J Plast Technol 22, 341–364 (2018). https://doi.org/10.1007/s12588-018-9215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-018-9215-x

Keywords

Navigation