Skip to main content
Log in

Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Strategic emerging minerals such as lithium, beryllium, niobium and tantalum are the most important rare metals currently, especially with the increasing demand of emerging industries on rare metals in China. The Jiajika deposit with a complete Li-Be-Nb-Ta metallogenic series is the largest pegmatite type rare metal deposit in China at present. In this paper, systematic researches of geochronology and petrogeochemistry were carried out to understand the genetic relationships between mine- ralization and magma evolution in the Jiajika deposit, which might be helpful to further rare-element prospecting in Songpan-Garze area. Zircon LA-ICP-MS U-Pb dating yields a concordia age of 217±1.1 Ma and a weighted mean 206Pb/238U age of 217±0.84 Ma for the aplite from the No. 308 pegmatite. Cassiterite LA-MC-ICPMS dating yields concordant ages of 211±4.6 Ma for the No. 308 pegmatite vein and 198±4.4 Ma for the No. 133 pegmatite vein, indicating that the rare metal mineralization mainly occurred in the Late Indosinian Period, further suggesting that the granites, aplites and pegmatites in Jiajika formed during a relatively stable stage after the intense orogeny of the Indosinian cycle. The rare metal-bearing granitic rocks and pegmatites show a clear linear relationship between A/CNK and A/NK and are enriched in total alkalis and depleted in CaO, FeO, MnO, MgO, Ba and Sr. All barren rocks and mineralized rocks feature similar rare earth element and trace element geochemical patterns. Thus, these characteristics indicate that the aplites and pegmatites represent the highly differentiated products of the two-mica granite (MaG) in this area, which is the most likely parent magma. During the evolution of magma, strong alkali metasomatism occurred between the melt phase and the volatile-rich fluid phase; as a result, large-scale rare metal mineralization occurred in certain structural zones of the pegmatite veins in the Jiajika deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Ayres, L. D., Averill, S. A., Wolfe, W. J., 1982. An Archean Molybdenite Occurrence of Possible Porphyry Type at Setting Net Lake, Northwestern Ontario, Canada. Economic Geology, 77(5): 1105–1119. https://doi.org/10.2113/gsecongeo.77.5.1105

    Article  Google Scholar 

  • Badanina, E. V., Syritso, L. F., Volkova, E. V., et al., 2010. Composition of Li-F Granite Melt and Its Evolution during the Formation of the Ore-Bearing Orlovka Massif in Eastern Transbaikalia. Petrology, 18(2): 131–157. https://doi.org/10.1134/s0869591110020037

    Article  Google Scholar 

  • Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231–234. https://doi.org/10.1130/g37475.1

    Article  Google Scholar 

  • Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous System. Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323–333. https://doi.org/10.1007/s004100050159

    Article  Google Scholar 

  • Bezmen, N. I., Gorbachev, P. N., 2014. Experimental Investigations of Superliquidus Phase Separation in Phosphorus-Rich Melts of Li-F Granite Cupolas. Petrology, 22(6): 574–587. https://doi.org/10.1134/S0869591114060022

    Article  Google Scholar 

  • BGMRSP (Bureau of Geology and Mineral Resources of Sichuan Province), 1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Blevin, P. L., 2004. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-Rich Ore Systems. Resource Geology, 54(3): 241–252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x

    Article  Google Scholar 

  • Bouseily, A. M., Sokkary, A. A., 1975. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207–219. https://doi.org/10.1016/0009-2541(75)90029-7

    Article  Google Scholar 

  • Breaks, F. W., Moore, JR. J. M., 1992. The Ghost Lake Batholith, Superior Province of Northwestern Ontario: A Fertile, S-type, Peraluminous Granite-Rare-Element Pegmatite System. Canadian Mineralogist, 30(3): 835–875

    Google Scholar 

  • Castro, A., Patiño Douce, A. E., Corretgé, L. G., et al., 1999. Origin of Peraluminous Granites and Granodiorites, Iberian Massif, Spain: An Experimental Test of Granite Petrogenesis. Contributions to Mineralogyand Petrology, 135(2/3): 255–276. https://doi.org/10.1007/s004100050511

    Article  Google Scholar 

  • Černý, P., 1982. The Tanco Pegmatite at Bernic Lake, Southeastern Manitoba. In: Černý, P., ed., Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada: Short Course Handbook, 8: 527–543

    Google Scholar 

  • Černý, P., 1991a. Rare-Element Granitic Pegmatites. Part I: Anatomy and Internal Evolution of Pegmatite Deposits. Geoscience Canada, 18(2): 49–67

    Google Scholar 

  • Černý, P., 1991b. Rare-Element Granitic Pegmatites. Part II: Regional to Global Environments and Petrogenesis. Geoscience Canada, 18(2): 68–81

    Google Scholar 

  • Černý, P., 1991c. Fertile Granites of Precambrian Rare-Element Pegmatite Fields: Is Geochemistry Controlled by Tectonic Setting or Source Lithologies?. Precambrian Research, 51(1/2/3/4): 429–468. https://doi.org/10.1016/0301-9268(91)90111-m

    Google Scholar 

  • Černý, P., Blevin, P, L, Cuney M., et al., 2005. Granite-Related Ore Deposits. Economic Geology, 107: 383–384. https://doi.org/10.2113/econgeo.107.2.383

    Google Scholar 

  • Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites Revisited. Canadian Mineralogist, 43(6): 2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005

    Article  Google Scholar 

  • Černý. P., Ercit, T. S., Vanstone P. J., 1998. Mineralogy and Petrology of the Tanco Rare-Element Pegmatite Deposit, Southeastern Manitoba. Archives of Biochemistry and Biophysics, 185(1): 156–164

    Google Scholar 

  • Chappell, B. W., 1999. Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. https://doi.org/10.1016/s0024-4937(98)00086-3

    Article  Google Scholar 

  • Chen, Z. H., Wang, D. H., Gong, Y. F., et al., 2013. 40Ar-39Ar Isotope Dating of Muscovite from Jingerquan Pegmatite Rare Metal Deposit in Hami, Xinjiang, and Its Geological Significance. Mineral Deposits, 25(4): 470–476 (in Chinese with English Abstract)

    Google Scholar 

  • Clark, G. S., Černý, P., 1987. Radiogenic 87Sr, Its Mobility, and the Interpretation of Rb-Sr Fractionation Trends in Rare-Element Granitic Pegmatites. Geochimica et Cosmochimica Acta, 51(4): 1011–1018. https://doi.org/10.1016/0016-7037(87)90112-8

    Article  Google Scholar 

  • Cui, Y. R., Xue, J. R, Chen, F., et al., 2017. The Reseach Advances in LA-(MC)-ICP-MS U-Pb Dating of Cassiterite. Acta Geologica Sinica, 91(6): 1386–1399. https://doi.org/10.3969/j.issn.0001-5717.2017.06.016 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Dai, H. Z., Wang, D. H., Liu, L. J., et al., 2018. Geochronology, Geochemistry and Their Geological Significances of No. 308 Pegmatite Vein in the Jiajika Deposit, Western Sichuan, China. Earth Science, 43(10): 3664–3681. https://doi.org/10.3799/dqkx.2018.528 (in Chinese with English Abstract)

    Google Scholar 

  • Deng, J. F., Zhao, H. L., Lai, S. C., et al., 1994. Generation of Muscovite/ Two-Mica Granite and Intracontinental Subduction. Earth Science: Journal of China University of Geosciences, 19(2): 139–147 (in Chinese with English Abstract)

    Google Scholar 

  • Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417–561. https://doi.org/10.1016/j.oregeorev.2015.02.022

    Google Scholar 

  • Du, L, T., 1986. Geochemical Principle of Alkaline Metasomatism. Sciencein China: Series B, 29(7): 754–770

    Google Scholar 

  • Eby, G. N., Woolley, A. R., Din, V., et al., 1998. Geochemistry and Petrogenesis of Nepheline Syenites: Kasungu-Chipala, Ilomba, and Ulindi Nepheline Syenite Intrusions, North Nyasa Alkaline Province, Malawi. Journal of Petrology, 39(8): 1405–1424. https://doi.org/10.1093/petroj/39.8.1405

    Article  Google Scholar 

  • Ercit, T. S., 2004. REE-Enriched Granitic Pegmatites. In: Linnen, R. L., Samson, I. M., eds., Rare-Element Geochemistry and Ore Deposits. Geological Association of Canada Short Course Notes. 257–296

    Google Scholar 

  • Fei, G. C., Yuan, T. J., Tang, W. C., et al., 2014. Classification Analysis of Rare Metal Ore Bearing Pegmatite in Ke’eryin, Sichuan Province. Mineral Deposits, 33: 187–188 (in Chinese with English Abstract)

    Google Scholar 

  • Fu, X. F., Hou, L. W., Liang, B., et al., 2017. Metallogenic Model and 3D Prospecting Model for the Jiajika Granitic Pegmatite Type Lithium Deposit. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Grasso, V. G., 1968. The TiO2 Frequency in Volcanic Rocks. Geologische Rundschau, 57(3): 930–935. https://doi.org/10.1007/bf01845375

    Article  Google Scholar 

  • Hao, X. F., Fu, X. F., Liang, B., et al., 2015. Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance. Mineral Deposits, 34(6): 1199–1208. https://doi.org/10.16111/j.0258-7106.2015.06.008 (in Chinese with English Abstract)

    Google Scholar 

  • Hou, J. L., Li, J. K., Wang, D. H., et al., 2018a. The Composition and Metallogenic Significance of Micas from Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 43(S2): 119–134. https://doi.org/10.3799/dqkx.2018.108 (in Chinese with English Abstract)

    Google Scholar 

  • Hou, J. L., Li, J. K., Zhang, Y. J., et al., 2018b. Li Isotopic Composition and Its Constrains on Rare Metal Mineralization of Jiajika Two-Mica Granite, Sichuan Province. Earth Science, 43(6): 2042–2054. https://doi.org/10.3799/dqkx.2018.000 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, S. X., 1980. Metasomatic Altered Rock Petrography. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Imeokparia, E. G., 1983. Geochemical Aspects of the Evolution and Mineralization of the Amo Younger Granite Complex (Northern Nigeria). Chemical Geology, 40(3/4): 293–312. https://doi.org/10.1016/0009-2541(83)90035-9

    Article  Google Scholar 

  • Jahn, B. M., Capedvila, R., Liu, D., et al., 2004. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 23(5): 629–653. https://doi.org/10.1016/S1367-9120(03)00125-1

    Article  Google Scholar 

  • Jahns, R. H., 1982. Internal Evolution of Pegmatite Bodies. In: Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada: Short Course Handbook, 8: 293–346

    Google Scholar 

  • Kalsbeek, F., Jepsen, H. F., Nutman, A. P., 2001. From Source Migmatites to Plutons: Tracking the Origin of Ca. 435 Ma S-Type Granites in the East Greenland Caledonian Orogen. Lithos, 57(1): 1–21. https://doi.org/10.1016/s0024-4937(00)00071-2

    Article  Google Scholar 

  • Koester, E., Pawley, A. R., Fernandes, L. A. D., et al., 2002. Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil. Journal of Petrology, 43(8): 1595–1616. https://doi.org/10.1093/petrology/43.8.1595

    Article  Google Scholar 

  • Lehmann, B., 1990. Metallogeny of Tin. Springer-Verlag, Berlin. 1–211

    Google Scholar 

  • Leng, C. B., Wang, S. X., Gou, T. Z, et al., 2007. A Review of the Research on the Koktokay No. 3 Granitic Pegmatite Dyke, Altai, Xinjiang. Geology and Mineral Resources of South China, 89(1): 14–20. https://doi.org/10.3969/j.issn.1007-3701.2007.01.003 (in Chinese with English Abstract)

    Google Scholar 

  • Li, H. Q., Chen, F. W., 2004. Geochronology of Regional Metallogeny in Xinjiang, China. Beijing Science and Technology Press, Beijing. 1–391 (in Chinese)

    Google Scholar 

  • Li, J. K., 2006. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China: [Dissertation]. China University of Geosciences, Wuhan (in Chinese)

    Google Scholar 

  • Li, J. K., Chou, I. M., 2016. An Occurrence of Metastable Cristobalite in Spodumene-Hosted Crystal-Rich Inclusions from Jiajika Pegmatite Deposit, China. Journal of Geochemical Exploration, 171: 29–36. https://doi.org/10.1016/j.gexplo.2015.10.012

    Article  Google Scholar 

  • Li, J. K., Chou, I. M., 2017. Homogenization Experiments of Crystal-Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond-Anvil Cell. Geofluids, 1–12. https://doi.org/10.1155/2017/9252913

    Google Scholar 

  • Li, J. K., Chou, I. M., Yuan, S., et al., 2013a. Observations on the Crystallization of Spodumene from Aqueous Solutions in a Hydrothermal Diamond-Anvil Cell. Geofluids, 13: 467–474. https://doi.org/10.1111/gfl.12048

    Article  Google Scholar 

  • Li, J. K., Liu, S. B., Wang, D. H., et al., 2007a. Metallogenic Epoch of Xuebaoding W-Sn-Be Deposit in Northwest Sichuan and Its Tectonic Tracing Significance. Mineral Deposits, 26(5): 557–562. https://doi.org/10.3969/j.issn.0258-7106.2007.05.008 (in Chinese with English Abstract)

    Google Scholar 

  • Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269–2283 (in Chinese with English Abstract)

    Google Scholar 

  • Li, J. K., Wang, D. H., Chen, Y. C., 2013b. The Ore-Forming, Mechanism of the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan Province: Evidence from Isotope Dating. Acta Geologica Sinica: English Edition, 87(1): 91–101. https://doi.org/10.1111/1755-6724.12033

    Article  Google Scholar 

  • Li, J. K., Wang, D. H., Liu, S. B., et al., 2008. SRXRF Microprobe Study of Fluid Incluisions for Pegmatite Deposits in Western Sichuan Province. Geoteconical et Metallogenica, 32(3): 332–337. https://doi.org/10.3969/j.issn.1001-1552.2008.03.010 (in Chinese with English Abstract)

    Google Scholar 

  • Li, J. K., Wang, D. H., Zhang, D. H., et al., 2006a. The Source of Ore-Forming Fluid in Jiajika Pegmatite Type Lithium Polymetallic Deposit, Sichuan Province. Acta Petrologoca et Mineralogica, 25(1): 45–52. https://doi.org/10.3969/j.issn.1000-6524.2006.01.006 (in Chinese with English Abstract)

    Google Scholar 

  • Li, J. K., Wang, D. H., Zhang, D. H., et al., 2006b. The Discovery of Silicate Daughter Mineral-Bearing Inclusions in the Jiajika Pegmatite Deposit, Western Sichuan, and Its Significance. Mineral Deposits, 25(S1): 131–134 (in Chinese with English Abstract)

    Google Scholar 

  • Li, J. K., Wang, D. H., Zhang, D. H., et al., 2007b. Mineralization Mechanism and Continental Dynamics Background of Pegmatite Type Deposit, Southern Sichuan Province. Atomic Energy Press, Beijing. 59–97 (in Chinese)

    Google Scholar 

  • Li, X. T., Yan, D. P., Qiu, L., 2018. Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-Alkaline to Alkaline Basalts in Xiqiu Area, Southwest China. Journal of Earth Science, 29(1):57–77. https://doi.org/10.1007/s12583-018-0825-1

    Article  Google Scholar 

  • Liu, F., Zhang, Z. X., Li, Q., et al., 2012. New Age Constraints on Koktokay Pegmatite No. 3 Vein, Altay Mountains, Xinjiang: Evidence from Molybdenite Re-Os Dating. Mineral Deposits, 31(5): 1111–1118. https://doi.org/10.3969/j.issn.0258-7106.2012.05.013 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, L. J., Fu, X. F., Wang, D. H., et al., 2015. Geological Characteristics and Metallogeny of Jiajika-Style Rare Metal Deposits. Mineral Deposits, 20 Hongzhang Dai, Denghong Wang, Lijun Liu, Yang Yu and Jingjing Dai 34(6): 1187–1198. https://doi.org/10.16111/j.0258-7106.2015.06.007 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, L. J., Wang, D. H., Hou, K. J., et al., 2017a. Application of Lithium Isotope to Jiajika New No. 3 Pegmatite Lithium Polymetallic Vein in Sichuan. Earth Science Frontiers, 24(5): 167–171. https://doi.org/10.13745/j.esf.yx.2017-1-16 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, L. J., Wang, D. H., Hou, K. J., et al., 2017b. Geochemical characteristics of REE and Its implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan. Earth Science, 42(10): 1673–1683. https://doi.org/10.3799/dqkx.2017.113 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. J.., Ma, D. S., 1993. Vein-Type Tungsten Deposits of China and Adjoining Regions. Ore Geology Reviews, 8(3/4): 233–246. https://doi.org/10.1016/0169-1368(93)90018-t

    Google Scholar 

  • Liu, Y. S., Gao S., Hu Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082

    Article  Google Scholar 

  • London, D., 1987. Internal Differentiation of Rare-Element Pegmatites: Effects of Boron, Phosphorus, and Fluorine. Geochimica et Cosmochimica Acta, 51(3): 403–420. https://doi.org/10.1016/0016-7037(87)90058-5

    Article  Google Scholar 

  • London, D., 1990. Internal Differentiation of Rare-Element Pegmatites: A Synthesis of Recent Research. Geological Society of America Special Papers, 1: 35–50. https://doi.org/10.1130/spe246-p35

    Article  Google Scholar 

  • London, D., 2005. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 80(1/2/3/4): 281–303. https://doi.org/10.1016/j.lithos.2004.02.009

    Article  Google Scholar 

  • Ludwig, K. R., 2003. Isoplot/Ex Version 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. 1–70

    Google Scholar 

  • Martin, R. F., Vito, C. D., 2005. The Patterns of Enrichment in Felsic Pegmatites Ultimately Dependon Tectonic Setting. Canadian Mineralogist, 43(6): 2027–2048. https://doi.org/10.2113/gscanmin.43.6.2027

    Article  Google Scholar 

  • Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9

    Article  Google Scholar 

  • Nguyen, T. A., Yang, X. Y., Thi, H. V., et al., 2019. Piaoac Granites Related W-Sn Mineralization, Northern Vietnam: Evidences from Geochemistry, Zircon Geochronology and Hf Isotopes. Journal of Earth Science, 30(1): 52–69. https://doi.org/10.1007/s12583-018-0865-6

    Article  Google Scholar 

  • Nizamoff, J. W., Falster, A. U., Simmons, W. B., et al., 1999. Phosphate Mineralogy of NYF-, LCT-, and Mixed-Type Granitic Pegmatites. Canadian Mineralogist, 37: 853–854. https://doi.org/10.3749/canmin.50.6.1713

    Google Scholar 

  • Norton, J. J., 1983. Sequence of Mineral Assemblages in Differentiated Granitic Pegmatites. Economic Geology, 78(5): 854–874. https://doi.org/10.2113/gsecongeo.78.5.854

    Article  Google Scholar 

  • Novák, M., Škoda, R., Gadas, P., et al., 2012. Contrasting Origin of the Mixed (NYF+LCT) Signature in Granitic Pegmatites, with Examples from the Moldanubian Zone, Czech Republic. Canadian Mineralogist, 50(4): 1077–1094. https://doi.org/10.3749/canmin.50.4.1077

    Article  Google Scholar 

  • Pan, M., Tang, Y., Xiao, R. Q., et al., 2016. The Discovery of the Superlarge Li Ore Vein X03 in the Jiajika Ore District. Acta Geological Sichuan, 36(3): 422–425. https://doi.org/10.3969/j.issn.1006-0995.2016.03.016 (in Chinese with English Abstract)

    Google Scholar 

  • Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745

    Article  Google Scholar 

  • Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491–1521. https://doi.org/10.1093/petrology/37.6.1491

    Article  Google Scholar 

  • Pezzotta, F., 2001. Madagascar’s Rich Pegmatite Districts: A General Classification. In: East Hampton, C. T., ed., Extra Lapis English No. 1, Madagascar. Lapis International. 34–35

    Google Scholar 

  • Qin, J. H., Liu, C., Chen, Y. C., et al., 2019. Timing of Lithospheric Extension in Northeastern China: Evidence from the Late Mesozoic Nianzishan A-Type Granitoid Complex. Journal of Earth Science, 30(4): ***-***.https://doi.org/10.1007/s12583-018-0996-9

    Google Scholar 

  • Qin, Y. L., Hao, X. F., Xu, Y. F., et al., 2015. Metallogenic Regularity and Prospecting Criteria of Granite Type Rare Metal Deposits in Jiajika Area, Sichuan Province. Geological Survey of China, 2(7): 35–39 (in-Chinese with English Abstract)

    Google Scholar 

  • Rittmann, A., 1957. On the Serial Character of Igneous Rocks. Egyptian Journal of Geology, 1: 23–48.

    Google Scholar 

  • Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4):254–269. https://doi.org/10.1016/j.jseaes.2010.03.008

    Article  Google Scholar 

  • Roger, F., Malavieille, J., Leloup, P. H., et al., 2004. Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt (Eastern Tibetan Plateau) with Tectonic Implications. Journal of Asian Earth Sciences, 22(5): 465–481. https://doi.org/10.1016/s1367-9120(03)00089-0

    Article  Google Scholar 

  • Saleh, G. M., 2007. Rare Metal-Bearing Pegmatites from the Southeastern Desert of Egypt. Geology, Geochemical Characteristics, and Petrogenesis. Chinese Journal of Geochemistry, 26(1): 8–22. https://doi.org/10.1007/s11631-007-0008-8

    Article  Google Scholar 

  • Shi, C. Y., 2008. Abundance of Chemical Elements of Granitoids in China. Geological PublishingHouse, Beijing (in Chinese)

    Google Scholar 

  • Sigoyer, J. D., Vanderhaeghe, O., Duchêne, S., et al., 2014. Generation and Emplacement of Triassic Granitoids within the Songpan Ganze Accretionary-Orogenic Wedge in a Context of Slab Retreat Accommodated by Tear Faulting, Eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 192–216. https://doi.org/10.1016/j.jseaes.2014.01.010

    Google Scholar 

  • Srivastava, P. K., Sinha, A. K., 1997. Geochemical Characterization of Tungsten-Bearing Granites from Rajasthan, India. Journal of Geochemical Exploration, 60(2): 173–184. https://doi.org/10.1016/s0375-6742(97)00005-8

    Article  Google Scholar 

  • Stemprok, M., 1979. Mineralized Granites and Their Origin. Episodes, 3: 20-24

    Google Scholar 

  • Su, A. N., Tian, S. H., Hou, Z. Q., et al., 2011. Lithium Isotope and Its Application to Jiajika Pegmatite Type Lithium Polymetallic Deposit in Sichuan. Geoscience, 25(2): 236–242. https://doi.org/10.3969/j.issn.1000-8527.2011.02.006 (in Chinese with English Abstract)

    Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

    Article  Google Scholar 

  • Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44. https://doi.org/10.1016/s0024-4937(98)00024-3

    Google Scholar 

  • Tang, G. F., Wu, S. X., 1984. Geological Study Report of Jiajika Granite- Pegmatite Type Li Deposit in Kangding, Sichuan. Inner Report (in Chinese)

    Google Scholar 

  • Thomas, R., Förster, H. J., Rickers, K., et al., 2005. Formation of Extremely F-Rich Hydrous Melt Fractions and Hydrothermal Fluids During Differentiation of Highly Evolved Tin-Granite Magmas: A Melt/Fluid-Inclusion Study. Contributions to Mineralogy and Petrology, 148(5): 582–601. https://doi.org/10.1007/s00410-004-0624-9

    Article  Google Scholar 

  • Tischendorf, G., 1977. Geochemical and Petrographic Criteria of Silicic Magmatic Rocks Associated with Rare Metal Mineralization. In: Stemprok, M., ed., Metallization Associated With Acid Magmatism. Ustredni Ustav Geologicky, Prague, 2: 41–96

    Google Scholar 

  • Tkachev, A. V., 2011. Evolution of Metallogeny of Granitic Pegmatites Associated with Orogens Throughout Geological Time. Geological Society, London, Special Publications, 350(1): 7–23. https://doi.org/10.1144/sp350.2

    Article  Google Scholar 

  • Wang, C. Y., Han, W. B., Wu, J. P., et al., 2007. Crustal Structure Beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 112(B7): B07307. https://doi.org/10.1029/2005JB003873

    Article  Google Scholar 

  • Wang, D. H., Chen, Y. C., Xu, Z. G., et al., 2002. Metallogenic Series and Metallogenic Regularity of Altai Metallogenic Province. Atomic Energy Press, Beijing. 1–492 (in Chinese)

    Google Scholar 

  • Wang, D. H., Li, J. K., Fu, X. F., 2005. 40Ar/39Ar Dating for the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan and Its Significance. Geochimica, 34(6): 541–547. https://doi.org/10.3321/j.issn:0379-1726.2005.06.001 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, D. H., Liu, L. J., Dai, H. Z., et al., 2017a. Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits. Earth Science, 42(12): 2243–2257. https://doi.org/10.3799/dqkx.2017.142 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, D. H., Liu, L. J., Hou, J. L., et al., 2017b. A Prime Review on Application of “Five Levels+Basement” Model for Jiajika-Style Rare Metal Deposits. Earth Science Frontiers, 24(5): 1–7. https://doi.org/10.13745/j.esf.yx.2017-1-1 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Q. W., Wang, K. M., Kan, Z. Z., et al., 2008. Granite and Its Mineralization Series in Western Sichuan. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Wang, Z. P., Liu, S. B., Ma, S. C., et al., 2018. Metallogenic Regularity, Deep and Periphery Prospecting of Dangba Superlarge Spodumene Deposit in Aba, Sichuan Province. Earth Science. 43(6): 2029–2041. https://doi.org/10.3799/dqkx.2018.604 (in Chinese with English Abstract)

    Google Scholar 

  • Weislogel, A. L., 2008. Tectonostratigraphic and Geochronologic Constraints on Evolution of the Northeast Paleotethys from the Songpan-Ganzi Complex, Central China. Tectonophysics, 451(1/2/3/4): 331–345. https://doi.org/10.1016/j.tecto.2007.11.053

    Article  Google Scholar 

  • Wen, C. H., Chen, J. F., Luo, X. Y., et al., 2016. Geochemical Features of the Chuanziyuan Rare Metal Pegmatite in Northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geocheistry, 35(1): 171–177. https://doi.org/10.3969/j.issn.1007-2802.2016.01.020 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, X. M., 2007. Using the Rittmann Serial Index to Define the Alkalinity of Igneous Rocks. Neues Jahrbuch für Mineralogie-Abhandlungen. Journal of Mineralogy and Geochemistry, 184(1): 95–103. https://doi.org/10.1127/0077-7757/2007/0082

    Google Scholar 

  • Yuan, C., Zhou, M. F, Sun, M., et al., 2010. Triassic Granitoids in the Eastern Songpan Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 290(3/4): 481–492. https://doi.org/10.1016/j.epsl.2010.01.005

    Article  Google Scholar 

  • Yuan, S. D., Peng, J. T., Hao, S., et al., 2011. In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235–242. https://doi.org/10.1016/j.oregeorev.2011.08.002

    Article  Google Scholar 

  • Yuan, Z. X, Bai, G., 2001. Temporal and Spatial Distribution of Endogenic Rare and Rare Earth Mineral Deposit of China. Mineral Deposits, 20(4): 347–354. https://doi.org/10.3969/j.issn.0258-7106.2001.04.008 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, H. F., Parrish, R., Zhang, L., et al., 2007. A-Type Granite and Adakitic Magmatism Association in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Implication for Lithospheric Delamination. Lithos, 97(3/4): 323–335. https://doi.org/10.1016/j.lithos.2007.01.002

    Article  Google Scholar 

  • Zhang, H. F., Zhang, L., Harris, N., et al., 2006. U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau: Constraints on Petrogenesis and Tectonic Evolution of the Basement. Contributions to Mineralogy and Petrology, 152(1): 75–88. https://doi.org/10.1007/s00410-006-0095-2

    Article  Google Scholar 

  • Zhang, L. F., Zhang, D. Y., Ouyang, H. W., et al., 2016. Technique for Separating Magnesium and Lithium from Salt Lake Brine with High Mg/Li Ratio. Mining and Metaliurgical Engineering, 36(4): 83–87. https://doi.org/10.3969/j.issn.0253-6099.2016.04.022 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, Y., Chen, P. R., 2010. Characteristics of Granitic Pegmatite with High-Purity Quartz in Spruce Pine Region, USA and Altay Region of Xinjiang, China. Geological Journal of China Universities, 16(4): 426–435. https://doi.org/10.3969/j.issn.1006-7493.2010.04.002 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, Y. X., Zhao, G. M., Zeng, Y. F., 2015. Geological Features and Gentic Model for the Granitic Pegmatite Type (Jiajika Type) Li Deposit in West Sichuan—By the Example of the Jiajika Li Deposit. Acta Geologica Sichuan, 35(3): 391–395. https://doi.org/10.3969/j.issn.10060995.2015.03.018 (in Chinese with English Abstract)

    Google Scholar 

  • Zhou, J. T., Wang, X. Y., Li, Z. M., et al., 2012. Geological Characteristics and Metallogenic Mechanism of the Toupi Granitic Pegmatite Type Spodumene Deposit in Guangchang County Jiangxi Province. Journal of East China Institute of Technology: Natural Science, 35(4): 378–387. https://doi.org/10.3969/j.issn.1674-3504.2012.04.012 (in Chinese with English Abstract)

    Google Scholar 

  • Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metal Deposits in Xinjiang, China. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Key Research and Develpoment Program of China (No. 2017YFC0602701), the China Postdoctoral Science Foundation (No. 2017M610960), the China Geological Survey’s projects (Nos. DD20190173 and DD20190379). The manuscript has been significantly improved by critical reviews of Prof. Stefano Albanese and two anonymous reviewers. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1011-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denghong Wang.

Electronic supplementary material

Table S1

Major element and trace element data of different types of rocks from the Jiajika superlarge Li-polymetallic deposit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Wang, D., Liu, L. et al. Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan, China. J. Earth Sci. 30, 707–727 (2019). https://doi.org/10.1007/s12583-019-1011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1011-9

Key Words

Navigation