Skip to main content
Log in

Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability: An Example of the 2008 Wenchuan Mw 7.9 Earthquake Affected Area

  • Seismology, Mathematical and Remote Sensing Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

This paper presents the landslide hazard assessment and slope-failure function using two Newmark displacement models regressed by regional and global station records. Taking the 2008 Wenchuan Mw 7.9 earthquake area as an example, based on the topographic and geological data of the study area, we prepared a factor-of-safety (Fs) map and a critical acceleration (ac) map, respectively. Then using these two simplified Newmark models, two displacement maps were compiled by combining the ac map and peak ground acceleration (PGA) map. By virtue of the actual landslide inventory of the W enchuan earthquake, we constructed the slope-failure probability curves of the two Newmark models. The results show that the abilities to predict landslide occurrence of the two simplified Newmark models are largely identical, by which the assessment results can well delineate the macroscopic distribution of coseismic landslides, and most predicted landslide cells are distributed on the two sides of the Beichuan-Yingxiu fault, especially Pengguan complex rock mass in the hanging wall of this fault. The probability equations of two Newmark models are roughly the same, though the parameters vary slightly. The probability equation proposed in this paper can be applied to the Wenchuan region and other areas with similar tectonic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bojadjieva, J., Sheshov, V., Bormard, C., 2018. Hazard and Risk Assessment of Earthquake-Induced Landslides-Case Study. Landslides, 15(1): 161–171. https://doi.org/10.1007/s10346-017-0905-9

    Article  Google Scholar 

  • Bray, J. D., 2007. Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements. Journal of Geotechnical and Geoenvironmental Engineering, 133: 381–392

    Article  Google Scholar 

  • Chen, X L., Liu, C. G., Yu, L., et al., 2014a. Critical Acceleration as a Criterion in Seismic Landslide Susceptibility Assessment. Geomorphology, 217: 15–22. https://doi.org/10.1016/j.geomorph.2014.04.011

    Article  Google Scholar 

  • Chen, X. L., Yuan, R. M., Yu, L., 2014b. Applying the Newmark’s Model of the Assessment of Earthquake-Triggered Landslides during the Lushan Earthquake. Seismology and Gelogy, 35(3): 661–670 (in Chinese with English Abstract)

    Google Scholar 

  • Chousianitis, K., Del Gaudio, V, Kalogeras, L., et al., 2014. Predictive Model of Arias Intensity and Newmark Displacement for Regional Scale Evaluation of Earthquake-Induced Landslide Hazard in Greece. Soil Dynamics and Earthquake Engineering, 65: 11–29. https://doi.org/10.1016/j.soildyn.2014.05.009

    Article  Google Scholar 

  • Cui, S., Pei, X, Wang, G., et al., 2010. Initiation of a Large Landslide Triggered by Wenchuan Earthquake Based on Ring Shear Tests. Chinese Journal ofGeotecfmical Engineering, 39(12): 2268–2277 (in Chinese with English Abstract)

    Google Scholar 

  • Dai, F. C., Xu, C., Yao, X, et al., 2011. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883–895. https://doi.org/10.1016/j.jseaes.2010.04.010

    Article  Google Scholar 

  • Deng, Q. D., 2007. Chinese Active Tectonic Map. Seismological Press, Beijing (in Chinese)

    Google Scholar 

  • Di, B. F., Stamatopoulos, C. A., Dandoulaki, M., et al., 2016. A Method Predicting the Earthquake-Induced Landslide Risk by Back Analyses of Past Landslides and Its Application in the Region of the Wenchuan 12/5/2008 Earthquake. Natural Hazards, 85(2): 903–927. https://doi.org/10.1007/s11069-016-2611-7

    Article  Google Scholar 

  • Dreyfus, D. K., 2011. A Comparison of Methodologies Used to Predict Earthquake-Induced Landslides: [Dissertation]. University of Texas, Texas

    Google Scholar 

  • Dreyfus, D. K., Rathje, E. M., Jibson, R. W., 2013. The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake. Engineering Geology, 163: 41–54. https://doi.org/10.1016/j.enggeo.2013.05.015

    Article  Google Scholar 

  • Gallen, S. F., Clark, M. K., Godt, J. W., et al., 2017. Application and Evaluation of a Rapid Response Earthquake-Triggered Landslide Model to the 25 April 2015Mw 7.8 Gorkha Earthquake, Nepal. Jectonophysics, 714/715: 173–187. https://doi.org/10.1016/j.tecto.2016.10.031

    Article  Google Scholar 

  • Ge, H., Chen, Q. G., Wang, D. W., 2013. The Assessment and Mapping of Seismic Landslide Hazards: A Case Study of Yingxiu Area, Sichuan Province. Geology in China, 2: 644–652 (in Chinese with English Abstract)

    Google Scholar 

  • Godt, J. W., Sener, B., Verdin, K. L., et al., 2008. Rapid Assessment of Earthquake-Induced Landsliding. In: Proceedings of the First World Landslide Fonun, Tokyo

    Google Scholar 

  • Harp, E. L., Jibson, R. W., 1996. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake. Bulletin of the Seismological Society of America, 86(1): S319–S332. https://doi.org/10.3133/ofr95213

    Google Scholar 

  • Hsieh, S. Y, Lee, C. T., 2011. Empirical Estimation of the Newark Displacement from the Arias Intensity and Critical Acceleration. Engineering Geology, 122(112): 34–42. https://doi.org/10.1016/j.enggeo.2010.12.006

    Article  Google Scholar 

  • Huang, R. Q., Li, W. L., 2009. Analysis of the Geo-Hazards Triggered by the 12 May 2008 Wenchuan Earthquake, China. Bulletin of Engineering Geology and the Environment, 68(3): 363–371. https://doi.org/10.1007/s10064-009-0207-0

    Article  Google Scholar 

  • Jasper, J. C., Cook, N. G. W., 1969. Foodamentals of Rock Mechanics. Methuen and Company, London. 513

    Google Scholar 

  • Jibson, R. W., 1993. Predicting Earthquake-Induced Landslide Displacements Using Newmark’s Sliding Block Analysis. Transportation Research Record, 1411: 9–17

    Google Scholar 

  • Jibson, R. W., Harp, E. L., Michael, J. A., 2000. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Engineering Geology, 58(3/4): 271–289. https://doi.org/10.1016/s0013-7952(00)00039-9

    Article  Google Scholar 

  • Jibson, R. W., 2007. Regression Models for Estimating Coseismic Landslide Displacement. Engineering Geology, 91(2/3/4): 209–218. https://doi.org/10.1016/j.enggeo.2007.01.013

    Article  Google Scholar 

  • Jibson, R. W., Harp, E. L., Michael, J. A., 1998. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California Area. Open-File Report, California

    Google Scholar 

  • Jibson, R. W., Michael, J. A., 2009. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska. U.S. Geological Survey Scientific Investigations Map 3077:2 Sheets (Scale 1: 25 000). 11

    Google Scholar 

  • Jibson, R. W., 2011. Methods for Assessing the Stability of Slopes during Earthquakes-A Retrospective. Engineering Geology, 122(112): 43–50. https://doi.org/10.1016/j.enggeo.2010.09.017

    Article  Google Scholar 

  • Jibson, R. W., Rathje, E. M., Jibson, M. W., et al., 2013. SLAMMER: Seismic Landslide Movement Modeled Using Earthquake Records. Geologic Hazards Science Center, USGS, Reston Virginia

    Google Scholar 

  • Kargel, J. S., Leonard, G. J., Shugar, D. H., et al., 2016. Geomorphic and Geologic Controls of Geohazards Induced by Nepals 2015 Gorkha Earthquake. Science, 351(6269): aac8353–aac8353. https://doi.org/10.1126/science.aac8353

    Article  Google Scholar 

  • Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406

    Article  Google Scholar 

  • Li, X J., Liu, L., Wang, Y S., et al., 2010. Analysis of Horizontal Strong-Motion Attenuation in the Great 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2440–2449. https://doi.org/10.1785/0120090245

    Article  Google Scholar 

  • Liu, H. B., Ling, H. I., 2012. Seismic Responses of Reinforced Soil Retaining Walls and the Strain Softening of Backfill Soils. International Journal of Geomechanics, 12(4): 351–356. https://doi.org/10.10611(asce)gm.1943-5622.0000051

    Article  Google Scholar 

  • Liu, J. M., Wang, T., Shi, J. S., et al., 2017. Emergency Rapid Assessment of Landslides Induced by the Jiuzhaigou Ms 7.0 earthquake, Sichuan, China. Journal ofGeomechnics, (5): 639–645 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, S. Y., Xu, C., 2019. Assessment of Co-Seismic Landslide Hazard Using the Newmark Model and Statistical Analyses: A Case Study of the 2013 Lushan, China, Mw 6.6 Earthquake. Natural Hazards, 96(1): 389–412. https://doi.org/10.1007/s11069-018-3548-9

    Article  Google Scholar 

  • McCrink, T. P., 2001. Regional Earthquake-Induced Landslide Mapping Using Newmark Displacement Criteria. San Cruz County, California. 77-92

    Google Scholar 

  • Meehan, C. L., Vahedifard, F., 2013. Evaluation of Simplified Methods for Predicting Earthquake-Induced Slope Displacements in Earth Dams and Embankments. Engineering Geology, 152(1): 180–193. https://doi.org/10.1016/j.enggeo.2012.10.016

    Article  Google Scholar 

  • Miles, S. B., Ho, C. L., 1999. Rigorous Landslide Hazard Zonation Using Newmark’s Method and Stochastic Grmmd Motion Simulation. Soil Dynamics and Earthquake Engineering, 18(4): 305–323. https://doi.org/10.1016/s0267-7261(98)00048-7

    Article  Google Scholar 

  • Ministry of Construction of the People’s Republic of China, 2009. Code for Geotechnical Engineering Investigation GB 50021-2001(2009). National Bureau of Quality Inspection, Beijing (in Chinese)

    Google Scholar 

  • Ministry of Water Resources of the People’s Republic of China, 2014. Standard for Engineering Classification of Rock Masses GB/T 50218-2014. Standards Press of China, Beijing (in Chinese)

    Google Scholar 

  • Newmark, N. M., 1965. Effects of Earthquakes on Dams and Embankments. Géotechnique, 15(2): 139–160. https://doi.org/10.1680/geot.1965.15.2.139

    Article  Google Scholar 

  • Nowicki Jessee, M.A., Hamburger, M. W., Allstadt, K., et al., 2018. A Global Empirical Model for Near-Real-Time Assessment of Seismically Induced Landslides. Journal of Geophysical Research: Earth Surface, 123(8): 1835–1859. https://doi.org/10.1029/2017jf004494

    Google Scholar 

  • Rao, G., Cheng, Y L., Lin, A. M., et al., 2017. Relationship between Landslides and Active Normal Faulting in the Epicentral Area of the AD 1556 M-8.5 Huaxian Earthquake, SE Weihe Graben (Central China). Journal of Earth Science, 28(3): 545–554. https://doi.org/10.1007/s12583-017-0900-z

    Article  Google Scholar 

  • Romeo, R., 2000. Seismically Induced Landslide Displacements: A Predictive Model. Engineering Geology, 58(3/4): 337–351. https://doi.org/10.1016/s0013-7952(00)00042-9

    Article  Google Scholar 

  • Robinson, T. R, Rosser, N.J., Davies, T. R. H., et al., 2018. Near-Real-Time Modeling of Landslide Impacts to Inform Rapid Response: An Example from the 2016 Kaik6ura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 108(3B): 1665–1682. https://doi.org/10.1785/0120170234

    Article  Google Scholar 

  • Saygili, G., Rathje, E. M., 2008. Empirical Predictive Models for Earthquake-Induced Sliding Displacements of Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 134(6): 790–803. https://doi.org/10.1061/(asce)1090-0241(2008)134:6(790)

    Article  Google Scholar 

  • Shao, X. Y, Ma, S. Y, Xu, C., et al., 2019. Planet Image-Based Inventorying and Machine Learning-Based Susceptibility Mapping for the Landslides Triggered by the 2018 Mw 6.6 Tomakomai, Japan Earthquake. Remote Sensing, 11(8): 978. https://doi.org/10.3390/rs11080978

    Article  Google Scholar 

  • Sharifi-Mood, M., Olsen, M. J., Gillins, D. T., et al., 2017. Performance-Based, Seismically-Induced Landslide Hazard Mapping of Western Oregon. Soil Dynamics and Earthquake Engineering, 103: 38–54. https://doi.org/10.1016/j.soildyn.2017.09.012

    Article  Google Scholar 

  • Sun, P., Wang, F., Yin, Y, et al., 2010. An Experimental Study on the Mechanism of Rapid and Long Roo-out Landslide Triggered by Wenchuan Earthquake. Seismology and Geology, 32(1): 98–106 (in Chinese with English Abstract)

    Google Scholar 

  • Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall-Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science-Journal of China University of Geosciences, 35(2): 317–323 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Tian, Y Y, Xu, C., Xu, X. W., et al., 2016. Detailed Inventory Mapping and Siyuan Ma and Chong Xu Spatial Analyses to Landslides Induced by the 2013 Ms 6.6 Minxian Earthquake of China. Journal of Earth Science, 27(6): 1016–1026. https://doi.org/10.1007/s12583-016-0905-z

    Article  Google Scholar 

  • USGS, 2008. (2019/03/18). https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650#finite-fault

  • Wang, G. H., Huang, R. Q., Lourenço, S. D. N., et al., 2014. A Large Landslide Triggered by the 2008 Wenchuan (M8.0) Earthquake in Donghekou Area: Phenomena and Mechanisms. Engineering Geology, 182: 148–157. https://doi.org/10.1016/j.enggeo.2014.07.013

    Article  Google Scholar 

  • Wang, T., Wu, S. R., Shi, J. S., et al., 2013. Case Study on Rapid Assessment of Regional Seismic Landslide Hazard Based on Simplified Newmark Displacement Model: Wenchuan M s 8.0 Earthquake. Journal of Engineering Geology, 21(1): 16–24

    Article  Google Scholar 

  • Wen, Z., Xie, J., Gao, M., et al., 2010. Near-Source Strong Groood Motion Characteristics of the 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2425–2439. https://doi.org/10.1785/0120090266

    Article  Google Scholar 

  • Wilson, R. C., Keefer, D. K., 1983. Dynamic Analysis of a Slope Failure from the 6 August 1979 Coyote Lake, California, Earthquake. Bulletin of the Deismological Society of America, 73(3): 863–877

    Google Scholar 

  • Xu, C., Xu, X. W., Dai, F. C., et al., 2013a. Application of an Incomplete Landslide Inventory, Logistic Regression Model and Its Validation for Landslide Susceptibility Mapping Related to the May 12, 2008 Wenchuan Earthquake of China. Natural Hazards, 68(2): 883–900. https://doi.org/10.1007/s11069-013-0661-7

    Article  Google Scholar 

  • Xu, C., Xu, X. W., Yao, Q., et al., 2013b. GIS-Based Bivariate Statistical Modelling for Earthquake-Triggered Landslides Susceptibility Mapping Related to the 2008 Wenchuan Earthquake, China. Quarterly Journal of Engineering Geology and Hydrogeology, 46(2): 221–236. https://doi.org/10.1144/qjegh2012-006

    Article  Google Scholar 

  • Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441–461. https://doi.org/10.1007/s10346-013-0404-6

    Article  Google Scholar 

  • Xu, C., Xu, X. W., Tian, Y Y, et al., 2016. Two Comparable Earthquakes Produced Greatly Different Coseismic Landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China Events. Journal of Earth Science, 27(6): 1008–1015. https://doi.org/10.1007/s12583-016-0684-6

    Article  Google Scholar 

  • Xu, C., Ma, S. Y., Tan, Z. B., et al., 2018. Landslides Triggered by the 2016 Mj 7.3 Kumamoto, Japan, Earthquake. Landslides, 15(3): 551–564. https://doi.org/10.1007/s10346-017-0929-1

    Article  Google Scholar 

  • Xu, G. X., Yao, L. K., Li, C. H., et al., 2012. Predictive Models for Permanent Displacement of Slopes Based on Recorded Strong-Motion Data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131–1136 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, L., Dai, F., Min, H., et al., 2010. Loess Landslide Types and Topographic Features at South Jingyang Plateau, China. Earth Science-Journal of China University of Geosciences, 35(1): 155–160 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515–518. https://doi.org/10.1130/g25462a.1

    Article  Google Scholar 

  • Yin, Y P., Wang, F. W., Sun, P., 2009. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides, 6(2): 139–152. https://doi.org/10.1007/s10346-009-0148-5

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 41661144037). The final publication is available at Springer via https://doi.org/10.1007/sl2583-019-0874-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Xu, C. Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability: An Example of the 2008 Wenchuan Mw 7.9 Earthquake Affected Area. J. Earth Sci. 30, 1020–1030 (2019). https://doi.org/10.1007/s12583-019-0874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-0874-0

Key words

Navigation