Skip to main content
Log in

A Review of Ultrahigh Temperature Metamorphism

  • Metamorphism, Magmatism and Tectonic Evolution of Central China Orogenic Belts
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Ultrahigh-temperature (UHT) metamorphism represents extreme crustal metamorphism with peak metamorphic temperatures exceeding 900 ºC and pressures ranging from 7 to 13 kbar with or without partial melting of crusts, which is usually identified in the granulite-facies rocks. UHT rocks are recognized in all major continents related to both extensional and compressive tectonic environments. UHT metamorphism spans different geological ages from Archean to Phanerozoic, providing information of the nature, petrofabric and thermal evolution of crusts. UHT metamorphism is traditionally identified by the presence of a diagnostic mineral assemblage with an appropriate bulk composition and oxidation state in Mg-Al-rich metapelite rocks. Unconventional geothermobarometers including Ti-in-zircon (TIZ) and Zr-in-rutile (ZIR) thermometers and phase equilibria modeling are increasingly being used to estimate UHT metamorphism. Concentrated on the issues about UHT metamorphism, this review presents the research history about UHT metamorphism, the global distribution of UHT rocks, the current methods for constraints on the UHT metamorphism, and the heat sources and tectonic settings of UHT metamorphism. Some key issues and prospects about the study of UHT metamorphism are discussed, e.g., identification of UHT metamorphism for non-supracrustal rocks, robustness of the unconventional geothermometers, tectonic affinity of UHT metamorphic rocks, and methods for the constraints of age and duration of UHT metamorphism. It is concluded that UHT metamorphism is of great importance to the understanding of thermal evolution of the lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Adjerid, Z., Godard, G., Ouzegane, K., et al., 2013. Multistage Progressive Evolution of Rare Osumilite-Bearing Assemblages Preserved in Ultrahigh-Temperature Granulites from In Ouzzal (Hoggar, Algeria). Journal of Metamorphic Geology, 31(5): 505–524. https://doi.org/10.1111/jmg.120.1

    Google Scholar 

  • Arima, M., Gower, C. F., 1991. Osumilite-Bearing Granulites in the Eastern Grenville Province, Eastern Labrador, Canada: Mineral Parageneses and Metamorphic Conditions. Journal of Petrology, 32(1): 29–61. https://doi.org/10.1093/petrology/32.1.29

    Google Scholar 

  • Baba, S., Hokada, T., Kaiden, H., et al., 2010. SHRIMP Zircon U-Pb Dating of Sapphirine-Bearing Granulite and Biotite-Hornblende Gneiss in the Schirmacher Hills, East Antarctica: Implications for Neoproterozoic Ultrahigh-Temperature Metamorphism Predating the Assembly of Gondwana. The Journal of Geology, 118(6): 621–639. https://doi.org/10.1086.656384

    Google Scholar 

  • Baba, S., Owada, M., Grew, E. S., et al., 2006. Sapphirine Granulite from Schirmacher Hills, Central Dronning Maud Land. In: Fütterer, D. K., Damaske, D., Kleinschmidt, G., et al., eds., Antarctic Contributions to Global Earth Science. Springer, Berlin. 37–44

    Google Scholar 

  • Baldwin, J. A., Brown, M., 2008. Age and Duration of Ultrahigh-Temperature Metamorphism in the Anápolis-Itauçu Complex, Southern Brasília Belt, Central Brazil—Constraints from U-Pb Geochronology, Mineral Rare Earth Element Chemistry and Trace-Element Thermometry. Journal of Metamorphic Geology, 26(2): 213–233. https://doi.org/10.1111/j.1525-1314.2007.00759.x

    Google Scholar 

  • Baldwin, J. A., Brown, M., Schmitz, M. D., 2007. First Application of Titanium-in-Zircon Thermometry to Ultrahigh-Temperature Metamorphism. Geology, 35(4): 295–298. https://doi.org/10.1130/g23285a.1

    Google Scholar 

  • Barbosa, J., Nicollet, C., Leite, C., et al., 2006. Hercynite-Quartz-Bearing Granulites from Brejões Dome Area, Jequié Block, Bahia, Brazil: Influence of Charnockite Intrusion on Granulite Facies Metamorphism. Lithos, 92(3/4): 537–556. https://doi.org/10.1016/j.lithos.2006.03.064

    Google Scholar 

  • Barnicoat, A. C., OʼHara, M. J., 1979. High-Temperature Pyroxenes from an Ironstone at Scourie, Sutherland. Mineralogical Magazine, 43(327): 371–375. https://doi.org/10.1180/minmag.1979.043.327.09

    Google Scholar 

  • Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445–522

    Google Scholar 

  • Bertrand, P., Ouzegane, K., Kienast, J. R., 1992. P-T-X Relationships in the Precambrian Al-Mg-Rich Granulites from in Ouzzal, Hoggar, Algeria. Journal of Metamorphic Geology, 10(1): 17–31. https://doi.org/10.1111/j.1525-1314.1992.tb00069.x

    Google Scholar 

  • Bhadra, S., 2016. Timing and Duration of Ultra-High Temperature Metamorphism in Sapphirine-Bearing Metapelite Granulite from Kodaikanal, Madurai Block, South India: Constraints from Mineral Chemistry and U-Th-Total Pb EPMA Age of Monazite. Journal of Applied Geochemistry, 18(1): 22

    Google Scholar 

  • Bhowmik, S. K., Wilde, S. A., Bhandari, A., et al., 2014. Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: An Example from the Central Indian Tectonic Zone. Journal of Petrology, 55(3): 585–621. https://doi.org/10.1093/petrology/egt0.8

    Google Scholar 

  • Bradley, D., Kusky, T. M., Haeussler, P., et al., 2003. Geological Signature of Early Tertiary Ridge Subduction in Alaska. In: Sisson, V. B., Roseske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacifica Margin. Geological Society of America Special Paper, 371: 19–49

    Google Scholar 

  • Brandt, S., Klemd, R., Okrusch, M., 2003. Ultrahigh-Temperature Metamorphism and Multistage Evolution of Garnet-Orthopyroxene Granulites from the Proterozoic Epupa Complex, NW Namibia. Journal of Petrology, 44(6): 1121–1144. https://doi.org/10.1093/petrology/44.6.1121

    Google Scholar 

  • Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11): 961–964. https://doi.org/10.1130/g22853a.1

    Google Scholar 

  • Brown, M., 2007a. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193–234. https://doi.org/10.2747/0020-6814.49.3.193

    Google Scholar 

  • Brown, M., 2007b. Metamorphism, Plate Tectonics, and the Supercontinent Cycle. Earth Science Frontiers, 14(1): 1–18. https://doi.org/10.1016/s1872-5791(07)60001.3

    Google Scholar 

  • Brown, M., 2009. Metamorphic Patterns in Orogenic Systems and the Geological Record. Geological Society, London, Special Publications, 318(1): 37–74. https://doi.org/10.1144/sp318.2

    Google Scholar 

  • Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553–569. https://doi.org/10.1016/j.gsf.2014.02.005

    Google Scholar 

  • Burg, J. P., Gerya, T. V., 2005. The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2): 75–95. https://doi.org/10.1111/j.1525-1314.2005.00563.x

    Google Scholar 

  • Bushmin, S. A., Dolivo-Dobrovolsky, D. V., Lebedeva, Y. M., 2007. Infiltration Metasomatism under High-Pressure Granulite-Facies Conditions Based on Orthopyroxene-Sillimanite Rocks in Shear Zones of the Lapland Granulite Belt. Doklady Earth Sciences, 412(1): 106–109. https://doi.org/10.1134/s1028334.07010242

    Google Scholar 

  • Carrington, D. P., Harley, S. L., 1995. Partial Melting and Phase Relations in High-Grade Metapelites: An Experimental Petrogenetic Grid in the KFMASH System. Contributions to Mineralogy and Petrology, 120(3/4): 270–291. https://doi.org/10.1007/s0041000500.5

    Google Scholar 

  • Chen, Z. Y., Zhang, L. F., Du, J. X., et al., 2013. Zr-in-Rutile Thermometry in Eclogite and Vein from Southwestern Tianshan, China. Journal of Asian Earth Sciences, 63: 70–80. https://doi.org/10.1016/j.jseaes.2012.09.033

    Google Scholar 

  • Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot?. Elements, 7(4): 235–240. https://doi.org/10.2113/gselements.7.4.235

    Google Scholar 

  • Collins, W. J., 2002a. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535. https://doi.org/10.1130/0091-7613(2002)030<0535:hotsac>2.0.co;2

    Google Scholar 

  • Collins, W. J., 2002b. Nature of Extensional Accretionary Orogens. Tectonics, 21(4): 6–1–6-12. https://doi.org/10.1029/2000tc0012.2

    Google Scholar 

  • Dallwitz, W. B., 1968. Co-Existing Sapphirine and Quartz in Granulite from Enderby Land, Antarctica. Nature, 219(5153): 476–477. https://doi.org/10.1038/219476.0

    Google Scholar 

  • Dasgupta, S., Pal, S., 2005. Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral-Fluid Equilibria and Petrogenetic Grids. Journal of Petrology, 46(5): 1045–1076. https://doi.org/10.1093/petrology/egi0.0

    Google Scholar 

  • Dasgupta, S., Sengupta, P., Ehl, J., et al., 1995. Reaction Textures in a Suite of Spinel Granulites from the Eastern Ghats Belt, India: Evidence for Polymetamorphism, a Partial Petrogenetic Grid in the System KFMASH and the Roles of ZnO and Fe2O3. Journal of Petrology, 36(2): 435–461. https://doi.org/10.1093/petrology/36.2.435

    Google Scholar 

  • Degeling, H. S., 2003. Zr Equilibria in Metamorphic Rocks: [Dissertation]. Australian National University, Melbourne. 2.1

    Google Scholar 

  • Diener, J. F. A., Powell, R., 2012. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 30(2): 131–142. https://doi.org/10.1111/j.1525-1314.2011.00959.x

    Google Scholar 

  • Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgOAl2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656. https://doi.org/10.1111/j.1525-1314.2007.00720.x

    Google Scholar 

  • Ellis, D. J., 1980. Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica: P-T Conditions of Metamorphism, Implications for Garnet-Cordierite Equilibria and the Evolution of the Deep Crust. Contributions to Mineralogy and Petrology, 74(2): 201–210. https://doi.org/10.1007/bf011320.5

    Google Scholar 

  • Ewing, T. A., Hermann, J., Rubatto, D., 2013. The Robustness of the Zr-in-Rutile and Ti-in-Zircon Thermometers during High-Temperature Metamorphism (Ivrea-Verbano Zone, Northern Italy). Contributions to Mineralogy and Petrology, 165(4): 757–779. https://doi.org/10.1007/s00410-012-0834.5

    Google Scholar 

  • Ferrero, S., Axler, J., Ague, J. J., et al., 2017. Preserved Anatectic Melt in Ultrahigh-Temperature (or High Pressure?) Felsic Granulites, Connecticut, US. EGU General Assembly Conference Abstracts, 19: 96.2

    Google Scholar 

  • Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201.0

    Google Scholar 

  • Fitzsimons, I. C. W., Harley, S. L., 1994. Garnet Coronas in Scapolite-Wollastonite Calc-Silicates from East Antarctica: The Application and Limitations of Activity-Corrected Grids. Journal of Metamorphic Geology, 12(6): 761–777. https://doi.org/10.1111/j.1525-1314.1994.tb00058.x

    Google Scholar 

  • Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 97(4): 435–450. https://doi.org/10.1086.629321

    Google Scholar 

  • Ganguly, P., Bose, S., Das, K., et al., 2018. Origin of Spinel+Quartz Assemblage in a Si-Undersaturated Ultrahigh-Temperature Aluminous Granulite and Its Implication for the P-T-Fluid History of the Phulbani Domain, Eastern Ghats Belt, India. Journal of Petrology, 58(10): 1941–1974. https://doi.org/10.1093/petrology/egx0.8

    Google Scholar 

  • Gorczyk, W., Smithies, H., Korhonen, F., et al., 2016. Ultra-Hot Mesoproterozoic Evolution of Intracontinental Central Australia. Geoscience Frontiers, 6(1): 23–37. https://doi.org/10.1016/j.gsf.2014.03.001

    Google Scholar 

  • Gou, L. L., Zhang, C. L., Wang, Q., 2015. Petrological Evidence for Isobaric Cooling of Ultrahigh-Temperature Pelitic Granulites from the Khondalite Belt, North China Craton. Science Bulletin, 60(17): 1535–1542

    Google Scholar 

  • Green, E. C. R., Holland, T. J. B., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7): 1181–1189. https://doi.org/10.2138/am.2007.2401

    Google Scholar 

  • Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869

    Google Scholar 

  • Grew, E. S., 1982. Osumilite in the Sapphirine-Quartz Terrane of Enderby Land, Antarctica: Implications for Osumilite Petrogenesis in the Granulite Facies. American Mineralogist, 67: 762–787

    Google Scholar 

  • Groppo, C., Lombardo, B., Rolfo, F., et al., 2007. Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51–75. https://doi.org/10.1111/j.1525-1314.2006.00678.x

    Google Scholar 

  • Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93–1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222/223: 124–142. https://doi.org/10.1016/j.precamres.2011.07.020

    Google Scholar 

  • Hacker, B. R., Gnos, L., Grove, M., et al., 2000. Hot and Dry Xenoliths from the Lower Crust of Tibet. Science, 287: 2463–2466

    Google Scholar 

  • Haissen, F., Garcia-Casco, A., Torres-Roldan, R., et al., 2004. Decompression Reactions and P-T Conditions in High-Pressure Granulites from Casares-Los Reales Units of the Betic-Rif Belt (S Spain and N Morocco). Journal of African Earth Sciences, 39(3/4/5): 375–383. https://doi.org/10.1016/j.jafrearsci.2004.07.030

    Google Scholar 

  • Harley, S. L., 1987. A Pyroxene-Bearing Meta-Ironstone and Other Pyroxene-Granulites from Tonagh Island, Enderby Land, Antarctica: Further Evidence for very High Temperature (>980 °C) Archaean Regional Metamorphism in the Napier Complex. Journal of Metamorphic Geology, 5(3): 341–356. https://doi.org/10.1111/j.1525-1314.1987.tb00389.x

    Google Scholar 

  • Harley, S. L., 1989. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 126(3): 215–247. https://doi.org/10.1017/s00167568000223.0

    Google Scholar 

  • Harley, S. L., 1998a. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1): 81–107. https://doi.org/10.1144/gsl.sp.1996.138.01.06

    Google Scholar 

  • Harley, S. L., 1998b. An Appraisal of Peak Temperatures and Thermal Histories in Ultrahigh-Temperature (UHT) Crustal Metamorphism: The Significance of Aluminous Orthopyroxene. In: Motoyoshi, Y., Shiraishi, K., eds., Origin and Evolution of Continents. Memoir National Institute Polar Research, Tokyo. 53: 49–73

    Google Scholar 

  • Harley, S. L., 1998c. Ultrahigh Temperature Granulite Metamorphism (1 050 ºC, 12 kbar) and Decompression in Garnet (Mg70)-Orthopyroxene-Sillimanite Gneisses from the Rauer Group, East Antarctica. Journal of Metamorphic Geology, 16(4): 541–562. https://doi.org/10.1111/j.1525-1314.1998.00155.x

    Google Scholar 

  • Harley, S. L., 2004. Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism. Journal of Mineralogical and Petrological Sciences, 99(4): 140–158. https://doi.org/10.2465/jmps.99.140

    Google Scholar 

  • Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125–154. https://doi.org/10.1111/j.1525-1314.2008.00765.x

    Google Scholar 

  • Harley, S. L., 2016. A Matter of Time: The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2): 50–72. https://doi.org/10.2465/jmps.1601.8

    Google Scholar 

  • Harley, S. L., Hensen, B. J., Sheraton, J. W., 1990. Two-Stage Decompression in Orthopyroxene-Sillimanite Granulites from Forefinger Point, Enderby Land, Antarctica: Implications for the Evolution of the Archaean Napier Complex. Journal of Metamorphic Geology, 8(6): 591–613. https://doi.org/10.1111/j.1525-1314.1990.tb00490.x

    Google Scholar 

  • Hensen, B. J., Harley, S. L., 1990. Graphical Analysis of p-T.x Relations in Granulite Facies Metapelites. In: Ashworth, J. R., Brown, M., eds., High Temperature Metamorphism and Crustal Anatexis. Unwin Hyman, London. 19–56

    Google Scholar 

  • Hokada, T., 2001. Feldspar Thermometry in Ultrahigh-Temperature Metamorphic Rocks: Evidence of Crustal Metamorphism Attaining ~1 100 °C in the Archean Napier Complex, East Antarctica. American Mineralogist, 86(7/8): 932–938. https://doi.org/10.2138/am-2001.0718

    Google Scholar 

  • Hokada, T., Suzuki, S., 2006. Feldspar in Felsic Orthogneiss as Indicator for UHT Crustal Processes. Journal of Mineralogical and Petrological Sciences, 101(5): 260–264. https://doi.org/10.2465/jmps.101.260

    Google Scholar 

  • Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x

    Google Scholar 

  • Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

    Google Scholar 

  • Hyndman, R. D., Currie, C. A., Mazzotti, S. P., 2005. Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat. GSA Today, 15(2): 4–10. https://doi.org/10.1130/1052-5173(2005)15<4:szbmba>2.0.co;2

    Google Scholar 

  • Ishii, S., Tsunogae, T., Santosh, M., 2006. Ultrahigh-Temperature Metamorphism in the Achankovil Zone: Implications for the Correlation of Crustal Blocks in Southern India. Gondwana Research, 10(1/2): 99–114. https://doi.org/10.1016/j.gr.2005.11.019

    Google Scholar 

  • Jagoutz, O., Müntener, O., Ulmer, P., et al., 2007. Petrology and Mineral Chemistry of Lower Crustal Intrusions: The Chilas Complex, Kohistan (NW Pakistan). Journal of Petrology, 48(10): 1895–1953. https://doi.org/10.1093/petrology/egm0.4

    Google Scholar 

  • Jamieson, R. A., Beaumont, C., 2013. On the Origin of Orogens. Geological Society of America Bulletin, 125(11/12): 1671–1702. https://doi.org/10.1130/b30855.1

    Google Scholar 

  • Jiao, S. J., Guo, J. H., Mao, Q., et al., 2010. Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379–393. https://doi.org/10.1007/s00410-010-0602.3

    Google Scholar 

  • Jiao, S. J., Guo, J. H., Mao, Q., et al., 2011. Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379–393. https://doi.org/10.1007/s00410-010-0602.3

    Google Scholar 

  • Kelly, N. M., Harley, S. L., 2004. Orthopyroxene-Corundum in Mg-Al-Rich Granulites from the Oygarden Islands, East Antarctica. Journal of Petrology, 45(7): 1481–1512. https://doi.org/10.1093/petrology/egh0.3

    Google Scholar 

  • Kelsey, D. E., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 13(1): 1–29. https://doi.org/10.1016/j.gr.2007.06.001

    Google Scholar 

  • Kelsey, D. E., Clark, C., Hand, M., et al., 2006. Comment on “First Report of Garnet-Corundum Rocks from Southern India: Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism”. Earth and Planetary Science Letters, 249(3/4): 529–534. https://doi.org/10.1016/j.epsl.2006.07.048

    Google Scholar 

  • Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311–356. https://doi.org/10.1016/j.gsf.2014.09.006

    Google Scholar 

  • Kelsey, D. E., White, R. W., Powell, R., 2003a. Orthopyroxene-Sillimanite-Quartz Assemblages: Distribution, Petrology, Quantitative P-T-X Constraints and P-T Paths. Journal of Metamorphic Geology, 21(5): 439–453. https://doi.org/10.1046/j.1525-1314.2003.00456.x

    Google Scholar 

  • Kelsey, D. E., White, R. W., Powell, R., et al., 2003b. New Constraints on Metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 21(8): 739–759. https://doi.org/10.1046/j.1525-1314.2003.00476.x

    Google Scholar 

  • Kemp, A. I. S., Shimura, T., Hawkesworth, C. J., et al., 2007. Linking Granulites, Silicic Magmatism, and Crustal Growth in Arcs: Ion Microprobe (Zircon) U-Pb Ages from the Hidaka Metamorphic Belt, Japan. Geology, 35(9): 807–810. https://doi.org/10.1130/g23586a.1

    Google Scholar 

  • Kihle, J., Bucher-Nurminen, K., 1992. Orthopyroxene-Sillimanite-Sapphirine Granulites from the Bamble Granulite Terrane, Southern Norway. Journal of Metamorphic Geology, 10(5): 671–693. https://doi.org/10.1111/j.1525-1314.1992.tb00114.x

    Google Scholar 

  • Kincaid, C., Silver, P., 1996. The Role of Viscous Dissipation in the Orogenic Process. Earth and Planetary Science Letters, 142(3/4): 271–288. https://doi.org/10.1016/0012-821x(96)00116.1

    Google Scholar 

  • Kooijman, E., Smit, M. A., Mezger, K., et al., 2012. Trace Element Systematics in Granulite Facies Rutile: Implications for Zr Geothermometry and Provenance Studies. Journal of Metamorphic Geology, 30(4): 397–412. https://doi.org/10.1111/j.1525-1314.2012.00972.x

    Google Scholar 

  • Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397. https://doi.org/10.1016/s1367-9120(03)00071.3

    Google Scholar 

  • Lebedeva, Y. M., Glebovitskii, V. A., Bushmin, S. A., et al., 2010. The Age of High-Pressure Metasomatism in Shear Zones during Collision-Related Metamorphism in the Lapland Granulite Belt: The Sm-Nd Method of Dating the Paragenesises from Sillimanite-Orthopyroxene Rocks of Por’ya Guba Nappe. Doklady Earth Sciences, 432(1): 602–605. https://doi.org/10.1134/s1028334.10050119

    Google Scholar 

  • Lee, B. C., Oh, C. W., Kim, T. S., et al., 2016. The Metamorphic Evolution from Ultrahigh-Temperature to Amphibolite Facies Metamorphism in the Odaesan Area after the Collision between the North and South China Cratons in the Korean Peninsula. Lithos, 256/257: 109–131. https://doi.org/10.1016/j.lithos.2016.03.019

    Google Scholar 

  • Lei, H. C., Xiang, H., Zhang, Z. M., et al., 2014. Paleoproterozoic UHT Granulite in the Sulu Orogen and Its Tectonic Implications. Acta Petrologica Sinica, 30: 2435–2445 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Z. L., Chen, H. L., Santosh, M., et al., 2004. Discovery of Ultrahigh-T Spinel-Garnet Granulite with Pure CO2 Fluid Inclusions from the Altay Orogenic Belt, NW China. Journal of Zhejiang University—Science A, 5(10): 1180–1182. https://doi.org/10.1631/jzus.2004.1180

    Google Scholar 

  • Li, Z. L., Yang, X. Q., Li, Y. Q., et al., 2014. Late Paleozoic Tectono-Metamorphic Evolution of the Altai Segment of the Central Asian Orogenic Belt: Constraints from Metamorphic P-T Pseudosection and Zircon U-Pb Dating of Ultra-High-Temperature Granulite. Lithos, 204: 83–96. https://doi.org/10.1016/j.lithos.2014.05.022

    Google Scholar 

  • Liu, S. J., Li, J. H., 2007. Review of Ultrahigh-Temperature (UHT) Metamorphism Study: A Case from North China Craton. Earth Science Frontiers, 14(3): 131–137 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, S. J., Li, J. H., Santosh, M., 2010. First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh-Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 159(2): 225–235. https://doi.org/10.1007/s00410-009-0425.2

    Google Scholar 

  • Liu, S. J., Tsunogae, T., Li, W. S., et al., 2012. Paleoproterozoic Granulites from Helingʼer: Implications for Regional Ultrahigh-Temperature Metamorphism in the North China Craton. Lithos, 148(1): 54–70. https://doi.org/10.1016/j.lithos.2012.05.024

    Google Scholar 

  • Liu, Y. C., Deng, L. P., Gu, X. F., et al., 2015. Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 27(1): 410–423. https://doi.org/10.1016/j.gr.2013.10.011

    Google Scholar 

  • Maidment, D. W., Hand, M., Williams, I. S., 2013. High Grade Metamorphism of Sedimentary Rocks during Palaeozoic Rift Basin Formation in Central Australia. Gondwana Research, 24(3/4): 865–885. https://doi.org/10.1016/j.gr.2012.12.020

    Google Scholar 

  • McFarlane, C. R. M., Carlson, W. D., Connelly, J. N., 2003. Prograde, Peak, and Retrograde P-T Paths from Aluminium in Orthopyroxene: High-Temperature Contact Metamorphism in the Aureole of the Makhavinekh Lake Pluton, Nain Plutonic Suite, Labrador. Journal of Metamorphic Geology, 21(5): 405–423. https://doi.org/10.1046/j.1525-1314.2003.00446.x

    Google Scholar 

  • McKenzie, D., Priestley, K., 2008. The Influence of Lithospheric Thickness Variations on Continental Evolution. Lithos, 102(1/2): 1–11. https://doi.org/10.1016/j.lithos.2007.05.005

    Google Scholar 

  • Meyer, M., John, T., Brandt, S., et al., 2011. Trace Element Composition of Rutile and the Application of Zr-in-Rutile Thermometry to UHT Metamorphism (Epupa Complex, NW Namibia). Lithos, 126(3/4): 388–401. https://doi.org/10.1016/j.lithos.2011.07.013

    Google Scholar 

  • Mitchell, R. J., Harley, S. L., 2017. Zr-in-Rutile Resetting in Aluminosilicate Bearing Ultra-High Temperature Granulites: Refining the Record of Cooling and Hydration in the Napier Complex, Antarctica. Lithos, 272/273: 128–146. https://doi.org/10.1016/j.lithos.2016.11.027

    Google Scholar 

  • Nabelek, P. I., Liu, M., 2004. Petrologic and Thermal Constraints on the Origin of Leucogranites in Collisional Orogens. Transactions of the Royal Society of Edinburgh: Earth Sciences, 95(1/2): 73–85. https://doi.org/10.1017/s02635933000009.6

    Google Scholar 

  • Nabelek, P. I., Whittington, A. G., Hofmeister, A. M., 2010. Strain Heating as a Mechanism for Partial Melting and Ultrahigh Temperature Metamorphism in Convergent Orogens: Implications of Temperature-Dependent Thermal Diffusivity and Rheology. Journal of Geophysical Research, 115(B12). https://doi.org/10.1029/2010jb0077.7

    Google Scholar 

  • Nakano, N., Osanai, Y., Owada, M., et al., 2004. Decompression Process of Mafic Granulite from Eclogite to Granulite Facies under Ultrahigh-Temperature Condition in the Kontum Massif, Central Vietnam. Journal of Mineralogical and Petrological Sciences, 99(4): 242–256. https://doi.org/10.2465/jmps.99.242

    Google Scholar 

  • Nicoli, G., Stevens, G., Buick, I., et al., 2014. A Comment on Ultrahigh-Temperature Metamorphism from an Unusual Corundum+ Orthopyroxene Intergrowth Bearing Al-Mg Granulite from the Southern Marginal Zone, Limpopo Complex, South Africa, by Belyanin et al.. Contributions to Mineralogy and Petrology, 167(6): 1022. https://doi.org/10.1007/s00410-014-1022.6

    Google Scholar 

  • O’Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x

    Google Scholar 

  • Pape, J., Mezger, K., Robyr, M., 2016. A Systematic Evaluation of the Zr-in-Rutile Thermometer in Ultra-High Temperature (UHT) Rocks. Contributions to Mineralogy and Petrology, 171(5): 44. https://doi.org/10.1007/s00410-016-1254.8

    Google Scholar 

  • Pattison, D. R. M., Chacko, T., Farquhar, J., et al., 2003. Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 44(5): 867–900. https://doi.org/10.1093/petrology/44.5.867

    Google Scholar 

  • Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton: Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3): 635–659. https://doi.org/10.1016/j.precamres.2010.08.015

    Google Scholar 

  • Peng, S. B., Jin, Z. M., Fu, J., M., 2006. Ultra-High Temperature Granulite Enclaves in the Darongshan-Shiwandashan Granites in South China and Implications. National Symposium on Petrology and Geodynamics, Nanjing (in Chinese)

    Google Scholar 

  • Perchuk, L., Gerya, T., Nozhkin, A., 1989. Petrology and Retrograde P-T Path in Granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia. Journal of Metamorphic Geology, 7(6): 599–617. https://doi.org/10.1111/j.1525-1314.1989.tb00621.x

    Google Scholar 

  • Prakash, D., Arima, M., Mohan, A., 2006. Ultrahigh-Temperature Metamorphism in the Palni Hills, South India: Insights from Feldspar Thermometry and Phase Equilibria. International Geology Review, 48(7): 619–638. https://doi.org/10.2747/0020-6814.48.7.619

    Google Scholar 

  • Royden, L. H., 1993. The Steady State Thermal Structure of Eroding Orogenic Belts and Accretionary Prisms. Journal of Geophysical Research: Solid Earth, 98(B3): 4487–4507. https://doi.org/10.1029/92jb019.4

    Google Scholar 

  • Rötzler, J., Romer, R. L., 2001. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part I: Petrology. Journal of Petrology, 42(11): 1995–2013. https://doi.org/10.1093/petrology/42.11.1995

    Google Scholar 

  • Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355.2

    Google Scholar 

  • Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer, Berlin. 373–400

    Google Scholar 

  • Rubatto, D., Hermann, J., 2007. Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks. Chemical Geology, 241(1/2): 38–61. https://doi.org/10.1016/j.chemgeo.2007.01.027

    Google Scholar 

  • Rubatto, D., Williams, I. S., Buick, I. S., 2001. Zircon and Monazite Response to Prograde Metamorphism in the Reynolds Range, Central Australia. Contributions to Mineralogy and Petrology, 140(4): 458–468. https://doi.org/10.1007/pl000076.3

    Google Scholar 

  • Sajeev, K., Osanai, Y., 2004. Ultrahigh-Temperature Metamorphism (1 150 ºC, 12 kbar) and Multistage Evolution of Mg-, Al-Rich Granulites from the Central Highland Complex, Sri Lanka. Journal of Petrology, 45(9): 1821–1844. https://doi.org/10.1093/petrology/egh0.5

    Google Scholar 

  • Sajeev, K., Osanai, Y., Santosh, M., 2004. Ultrahigh-Temperature Metamorphism Followed by Two-Stage Decompression of Garnet-Orthopyroxene-Sillimanite Granulites from Ganguvarpatti, Madurai Block, Southern India. Contributions to Mineralogy and Petrology, 148(1): 29–46. https://doi.org/10.1007/s00410-004-0592.0

    Google Scholar 

  • Sandiford, M., McLaren, S., 2006. Thermo-Mechanical Controls on Heat Production Distributions and the Long-Term Evolution of the Continents. In: Brown, M., Rushmer, T., eds., Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge. 67–91

    Google Scholar 

  • Sandiford, M., Powell, R., 1986. Pyroxene Exsolution in Granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1 000 ºC Metamorphic Temperatures in Archean Continental Crust. American Mineralogist, 71(7/8): 946–954

    Google Scholar 

  • Santosh, M., Kusky, T. M., 2010. Origin of Paired High Pressure-Ultrahigh-Temperature Orogens: A Ridge Subduction and Slab Window Model. Terra Nova, 22(1): 35–42. https://doi.org/10.1111/j.1365-3121.2009.00914.x

    Google Scholar 

  • Santosh, M., Liu, S. J., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222/223: 77–106. https://doi.org/10.1016/j.precamres.2011.05.003

    Google Scholar 

  • Santosh, M., Omori, S., 2008a. CO2 Flushing: A Plate Tectonic Perspective. Gondwana Research, 13(1): 86–102. https://doi.org/10.1016/j.gr.2007.07.003

    Google Scholar 

  • Santosh, M., Omori, S., 2008b. CO2 Windows from Mantle to Atmosphere: Models on Ultrahigh-Temperature Metamorphism and Speculations on the Link with Melting of Snowball Earth. Gondwana Research, 14(1/2): 82–96. https://doi.org/10.1016/j.gr.2007.11.001

    Google Scholar 

  • Santosh, M., Sajeev, K., 2006. Anticlockwise Evolution of Ultrahigh-Temperature Granulites within Continental Collision Zone in Southern India. Lithos, 92(3/4): 447–464. https://doi.org/10.1016/j.lithos.2006.03.063

    Google Scholar 

  • Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly: Evidence from North China Craton. Gondwana Research, 10(3/4): 256–266. https://doi.org/10.1016/j.gr.2006.06.005

    Google Scholar 

  • Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263–285. https://doi.org/10.1016/j.gr.2006.10.009

    Google Scholar 

  • Santosh, M., Wilde, S., Li, J. H., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4): 178–196. https://doi.org/10.1016/j.precamres.2007.06.006

    Google Scholar 

  • Scrimgeour, I. R., Kinny, P. D., Close, D. F., et al., 2005. High-T Granulites and Polymetamorphism in the Southern Arunta Region, Central Australia: Evidence for a 1.64Ga Accretional Event. Precambrian Research, 142(1/2): 1–27. https://doi.org/10.1016/j.precamres.2005.08.005

    Google Scholar 

  • Sengupta, P., Raith, M. M., 2002. Garnet Composition as a Petrogenetic Indicator: An Example from a Marble—Calc-Silicate Granulite Interface at Kondapalle, Eastern Ghats Belt, India. American Journal of Science, 302(8): 686–725. https://doi.org/10.2475/ajs.302.8.686

    Google Scholar 

  • Shimpo, M., Tsunogae, T., Santosh, M., 2006. First Report of Garnet-Corundum Rocks from Southern India: Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism. Earth and Planetary Science Letters, 242(1/2): 111–129. https://doi.org/10.1016/j.epsl.2005.11.042

    Google Scholar 

  • Sisson, V. B., Poole, A. R., Harris, N. R., et al., 2003. Geochemical and Geochronologic Constraints for Genesis of a Tonalite-Trondhjemite Suite and Associated Mafic Intrusive Rocks in the Eastern Chugach Mountains, Alaska: A Record of Ridge Transform Subduction. In: Sisson, V. B., Roeske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 371: 293–326

    Google Scholar 

  • Sizova, E., Gerya, T., Brown, M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 25(2): 522–545. https://doi.org/10.1016/j.gr.2012.12.011

    Google Scholar 

  • Stüwe, K., 1998. Heat Sources of Cretaceous Metamorphism in the Eastern Alps—A Discussion. Tectonophysics, 287(1/2/3/4): 251–269. https://doi.org/10.1016/s0040-1951(98)80072.3

    Google Scholar 

  • Stüwe, K., 2007. Geodynamics of the Lithosphere: Quantitative Description of Geological Problems, 2nd Edition. Springer-Verlag, Berlin, Heidelberg, Dordrecht. 4.3

    Google Scholar 

  • Taylor-Jones, K., Powell, R., 2015. Interpreting Zirconium-in-Rutile Thermometric Results. Journal of Metamorphic Geology, 33(2): 115–122. https://doi.org/10.1111/jmg.121.9

    Google Scholar 

  • Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings. Journal of Geophysical Research: Solid Earth, 100(B8): 15565–15579. https://doi.org/10.1029/95jb001.1

    Google Scholar 

  • Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703–713. https://doi.org/10.1111/j.1525-1314.2007.00724.x

    Google Scholar 

  • Tong, L. X., Chen, Y. B., Xu, Y. G., et al., 2013. Zircon U-Pb Ages of the Ultrahigh-Temperature Metapelitic Granulite from the Altai Orogen, NW China, and Geological Implications. Acta Petrologica Sinica, 29(10): 3435–3445 (in Chinese with English Abstract)

    Google Scholar 

  • Tong, L. X., Xu, Y. G., Cawood, P. A., et al., 2014. Anticlockwise P-T Evolution at ~2.0 Ma Recorded from Ultrahigh-Temperature Metapelitic Granulite in the Chinese Altai Orogenic Belt, a Possible Link with the Tarim Mantle Plume?. Journal of Asian Earth Sciences, 94: 1–11. https://doi.org/10.1016/j.jseaes.2014.07.043

    Google Scholar 

  • Tsunogae, T., Santosh, M., 2006. Spinel-Sapphirine-Quartz Bearing Composite Inclusion within Garnet from an Ultrahigh-Temperature Pelitic Granulite: Implications for Metamorphic History and P-T Path. Lithos, 92(3/4): 524–536. https://doi.org/10.1016/j.lithos.2006.03.060

    Google Scholar 

  • Tsunogae, T., Santosh, M., 2011. Sapphirine+Quartz Assemblage from the Southern Granulite Terrane, India: Diagnostic Evidence for Ultrahigh-Temperature Metamorphism within the Gondwana Collisional Orogen. Geological Journal, 46(2/3): 183–197. https://doi.org/10.1002/gj.12.4

    Google Scholar 

  • Tsunogae, T., Santosh, M., Ohyama, H., et al., 2008. High-Pressure and Ultrahigh-Temperature Metamorphism at Komateri, Northern Madurai Block, Southern India. Journal of Asian Earth Sciences, 33(5/6): 395–413. https://doi.org/10.1016/j.jseaes.2008.02.004

    Google Scholar 

  • Vilà, M., Fernández, M., Jiménez-Munt, I., 2010. Radiogenic Heat Production Variability of Some Common Lithological Groups and Its Significance to Lithospheric Thermal Modeling. Tectonophysics, 490(3/4): 152–164. https://doi.org/10.1016/j.tecto.2010.05.003

    Google Scholar 

  • Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224: 71–93. https://doi.org/10.1016/j.precamres.2012.09.014

    Google Scholar 

  • Wang, W., Wei, C. J., Wang, T., et al., 2009. Confirmation of Pelitic Granulite in the Altai Orogen and Its Geological Significance. Chinese Science Bulletin, 54(14): 2543–2548. https://doi.org/10.1007/s11434-009-0041.6

    Google Scholar 

  • Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413–433. https://doi.org/10.1007/s00410-006-0068.5

    Google Scholar 

  • Wei, C. J., 2012. Advance of Metamorphic Petrology during the First Decade of the 21st Century. Bulletin of Mineralogy, Petrology and Geochemistry, 31: 415–427 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, C. J., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (II): Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite. Acta Petrologica Sinica, 32(6): 1625–1643 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, C. J., Guan, X. J., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 33: 1381–1404 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, C. J., Powell, R., Clarke, G. L., 2004. Calculated Phase Equilibria for Low-and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems. Journal of Metamorphic Geology, 22(5): 495–508. https://doi.org/10.1111/j.1525-1314.2004.00530.x

    Google Scholar 

  • Wei, C. J., Zhou, X. W., 2003. Progress in the Study Of Metamorphic Phase Equilibrium. Earth Science Frontiers, 10: 341–351 (in Chinese with English Abstract)

    Google Scholar 

  • Wei, C. J., Zhu, W. P., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (I): Metamorphic Phase Equilibria for HT-UHT Metapelites/Greywackes. Acta Petrologica Sinica, 32(6): 1611–1624 (in Chinese with English Abstract)

    Google Scholar 

  • White, R. W., Powell, R., 2010. Retrograde Melt-Residue Interaction and the Formation of Near-Anhydrous Leucosomes in Migmatites. Journal of Metamorphic Geology, 28(6): 579–597. https://doi.org/10.1111/j.1525-1314.2010.00881.x

    Google Scholar 

  • White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139–153. https://doi.org/10.1046/j.0263-4929.2000.00303.x

    Google Scholar 

  • White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511–527. https://doi.org/10.1111/j.1525-1314.2007.00711.x

    Google Scholar 

  • Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., 2009. Temperature-Dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism. Nature, 458(7236): 319–321. https://doi.org/10.1038/nature078.8

    Google Scholar 

  • Xiang, H., Zhang, Z. M., Lei, H. C., et al., 2014a. Paleoproterozoic Ultrahigh-Temperature Pelitic Granulites in the Northern Sulu Orogen: Constraints from Petrology and Geochronology. Precambrian Research, 254: 273–289. https://doi.org/10.1016/j.precamres.2014.09.004

    Google Scholar 

  • Xiang, H., Zhong, Z. Q., Li, Y., et al., 2014b. Sapphirine-Bearing Granulites from the Tongbai Orogen, China: Petrology, Phase Equilibria, Zircon U-Pb Geochronology and Implications for Paleozoic Ultrahigh Temperature Metamorphism. Lithos, 208/209: 446–461. https://doi.org/10.1016/j.lithos.2014.08.017

    Google Scholar 

  • Yang, C., Wei, C. J., 2017. Ultrahigh Temperature (UHT) Mafic Granulites in the East Hebei, North China Craton: Constraints from a Comparison between Temperatures Derived from REE-Based Thermometers and Major Element-Based Thermometers. Gondwana Research, 46: 156–169. https://doi.org/10.1016/j.gr.2017.02.017

    Google Scholar 

  • Yang, Q. Y., Santosh, M., Tsunogae, T., 2014. Ultrahigh-Temperature Metamorphism under Isobaric Heating: New Evidence from the North China Craton. Journal of Asian Earth Sciences, 95: 2–16. https://doi.org/10.1016/j.jseaes.2014.01.018

    Google Scholar 

  • Yang, X. Q., Li, Z. L., 2013. Fluid Characteristics of Late Paleozoic Ultrahigh-Temperature Granulites from the Altay Orogenic Belt, Northwestern China and Its Significance. Acta Petrologica Sinica, 29(10): 3446–3456 (in Chinese with English Abstract)

    Google Scholar 

  • Yoshino, T., Okudaira, T., 2004. Crustal Growth by Magmatic Accretion Constrained by Metamorphic P-T Paths and Thermal Models of the Kohistan Arc, NW Himalayas. Journal of Petrology, 45(11): 2287–2302. https://doi.org/10.1093/petrology/egh0.6

    Google Scholar 

  • Yu, S. Y., Zhang, J. X., Gong, J. H., 2011. Zr-in-Rutile Thermometry in HP/UHT Granulite in the Bashiwake Area of the South Altun and Its Geological Implications. Earth Science Frontiers, 18(2): 140–150 (in Chinese with English Abstract)

    Google Scholar 

  • Zack, T., Moraes, R., Kronz, A., 2004. Temperature Dependence of Zr in Rutile: Empirical Calibration of a Rutile Thermometer. Contributions to Mineralogy and Petrology, 148(4): 471–488. https://doi.org/10.1007/s00410-004-0617.8

    Google Scholar 

  • Zhai, M. G., Liu, W. J., 2001. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 17(1): 28–38 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2010. Zr-in-Rutile Thermometry in HP/UHP Eclogites from Western China. Contributions to Mineralogy and Petrology, 160(3): 427–439. https://doi.org/10.1007/s00410-009-0486.2

    Google Scholar 

  • Zhang, J. X., Meng, F. C., 2005. Sapphirine-Bearing High Pressure Mafic Granulite and Its Implications in the South Altyn Tagh. Chinese Science Bulletin, 50(3): 265–269. https://doi.org/10.1007/bf028975.7

    Google Scholar 

  • Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2000. Petrology and P-T Path of the Fuping Mafic Granulites: Implications for Tectonic Evolution of the Central Zone of the North China Craton. Journal of Metamorphic Geology, 18(4): 375–391. https://doi.org/10.1046/j.1525-1314.2000.00264.x

    Google Scholar 

  • Zhao, L., Guo, F., Fan, W. M., et al., 2011. Late Paleozoic Ultrahigh-Temperature Metamorphism in South China: A Case Study of Granulite Enclaves in the Shiwandashan Granites. Acta Petrologica Sinica, 27(6): 1707–1720 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Prof. Zhendong You for his 90th birthday. This research was supported by the National Natural Science Foundation of China (Nos. 41772054, 41572039 and 41372076) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGQYZX1704). We thank Prof. Jingbo Liu and other two anonymous reviewers for offering constructive comments, which have helped us to improve the manuscript greatly. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0846-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijin Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Xu, H. A Review of Ultrahigh Temperature Metamorphism. J. Earth Sci. 29, 1167–1180 (2018). https://doi.org/10.1007/s12583-018-0846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0846-9

Key Words

Navigation