Skip to main content
Log in

Multistage exhumation and partial melting of high-T ultrahigh-pressure metamorphic rocks in continental subduction-collision zones

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

High-temperature (HT; >850°C) metamorphism in continental collision orogens, particularly for those ultrahigh-pressure (UHP) metamorphic rocks, has become one of the remarkable topics in Earth science. It has bearing on the element and isotope behaviors of UHP rocks, their partial melting and related geodynamic effects during exhumation. In this paper, five representative continental collision orogens with typical HT/UHP rocks, including the Dabie orogen in China, the Kokchetav in Kazakhstan, the Caledonides in Greenland, the Rhodope in Greece, and the Erzgebirge in Germany are introduced, and their HT/UHP metamorphism and evolution processes are summarized. In addition, metamorphic P-T-t paths, multistage exhumation processes, and partial melting and preservation and retrogression of UHP index minerals during exhumation and their possible mechanisms are discussed. On this basis, the forthcoming key fields and scientific subjects of HT/UHP rocks within continental subduction channel are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125–148

    Google Scholar 

  • Babeyko A Y, Sobolev S V, Trumbull R B, et al. 2002. Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau. Earth Planet Sci Lett, 199: 373–388

    Google Scholar 

  • Baldwin J A, Brown M, Schmitz M D. 2007. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology, 35: 295–298

    Google Scholar 

  • Baziotis I, Mposkos E, Perdikatsis V. 2008. Geochemistry of amphibolitized eclogites and cross-cutting tonalitic-trondhjemitic dykes in the Metamorphic Kimi Complex in East Rhodope (N.E. Greece): Implications for partial melting at the base of a thickened crust. Int J Earth Sci, 97: 459–477

    Google Scholar 

  • Bourdon B, Tipper E T, Fitoussi C, et al. 2010. Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta, 74: 5069–5083

    Google Scholar 

  • Braun I, Raith M, Kumar G R R. 1996. Dehydration-melting phenomena in leptynitic gneisses and the generation of leucogranites: A case study from the Kerala Khondalite belt, southern India. J Petrol, 37: 1285–1305

    Google Scholar 

  • Brown M. 2004. The mechanism of melt extraction from lower continental crust of orogens. Trans R Soc Edinb-Earth Sci, 95: 35–48

    Google Scholar 

  • Brown M. 2010. Melting of the continental crust during orogenesis: The thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Can J Earth Sci, 47: 655–694

    Google Scholar 

  • Brown M, Korhonen F J, Siddoway C S. 2011. Organizing melt flow through the crust. Element, 7: 261–266

    Google Scholar 

  • Burg J P, Gerya T V. 2005. The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanical models and application to the Lepontine Dome in the Central Alps. J Metamorphic Geol, 23: 75–95

    Google Scholar 

  • Carswell D A, Compagnoni R. 2003. Ultra-high pressure metamorphism. Eur Mineral Union Notes Mineral, 5: 1–508

    Google Scholar 

  • Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequence. Contrib Mineral Petrol, 86: 107–118

    Google Scholar 

  • Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14

    Google Scholar 

  • Chopin C, Henry C, Michard A. 1991. Geology and petrology of the coesite-bearing terrane, Dora Maira massif, Western Alps. Eur J Mineral, 3: 263–291

    Google Scholar 

  • Coleman R G, Wang X M. 1995. Ultrahigh Pressure Metamorphism. Cambridge: Cambridge University Press. 1–528

    Google Scholar 

  • Cloos M, Shreve R. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and Description. Pure Appl Geophys, 128: 455–500

    Google Scholar 

  • Cloos M, Shreve R. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and Discussion. Pure Appl Geophys, 128: 501–544

    Google Scholar 

  • Davies J, von Blankenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 129: 85–102

    Google Scholar 

  • Dobrzhinetskaya L, Schweinehage R, Massonne H J, et al. 2002. Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: Evidence of deep subduction. J Metamorph Geol, 20: 481–492

    Google Scholar 

  • Dobretsov N L, Sobolev N V, Shatsky V S, et al. 1995. Geotectonic evolution of diamondiferous paragneisses, Kokchetav Complex, northern Kazakhstan: The geologic enigma of ultrahigh-pressure crustal rocks within a Paleozoic foldbelt. Island Arc, 4: 267–279

    Google Scholar 

  • England P C, Thompson A. 1986. Some thermal and tectonic models for crustal melting in continental collision zones. In: Coward M P, Ries A C, eds. Collision Tectonics. Geol Soc Spec Publ, 19: 83–94

    Google Scholar 

  • Ernst W G, Liou J G. 2008. High- and ultrahigh-pressure metamorphism: Past results and future prospects. Am Mineral, 93: 1771–1786

    Google Scholar 

  • Faure M, Lin W, Shu L, et al. 1999. Tectonics of the Dabieshan (Eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 11: 251–258

    Google Scholar 

  • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol, 154: 429–437

    Google Scholar 

  • Galy A, Bar-Matthews M, Halicz L, et al. 2002. Mg isotope composition of carbonate: Insight from speleothem formation. Earth Planet Sci Lett, 201: 105–115

    Google Scholar 

  • Gayk T, Kleinschrodt R, Langosch A, et al. 1995. Quartz exsolution in clinopyroxene of high-pressure granulite from the Munchberg Massif. Eur J Mineral, 7: 1217–1220

    Google Scholar 

  • Ghiribelli B, Frezzotti M L, Palmeri R. 2002. Coesite in eclogites of the Lanterman range (Antarctica): Evidence from textural and Raman studies. Eur J Mineral, 14: 355–360

    Google Scholar 

  • Gilotti J A, Ravna E K. 2002. First evidence for ultrahigh-pressure metamorphism in the North-East Greenland Caledonides. Geology, 30: 551–554

    Google Scholar 

  • Gilotti J A, Nutman A P, Brueckner H K. 2004. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism. Contrib Mineral Petrol, 148: 216–235

    Google Scholar 

  • Gilotti J A, McClelland W C. 2007. Characteristics of, and a tectonic model for, ultrahigh-pressure metamorphism in the overriding plate of the Caledonian Orogen. Int Geol Rev, 47: 777–797

    Google Scholar 

  • Gilotti J A, Jones K A, Elvevold S. 2008. Caledonian metamorphic patterns in Greenland. In: Higgins A K, Gilotti J A, Smith M P, eds. The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia. Geol Soc Am Mem, 202: 201–225

    Google Scholar 

  • Gilotti J A, McClelland W C. 2011. Geochemical and geochronological evidence that the North-East Greenland ultrahigh-pressure terrane is Laurentian crust. J Geol, 119: 439–456

    Google Scholar 

  • Gilotti J A. 2013. The realm of ultrahigh-pressure metamorphism. Elements, 9: 255–260

    Google Scholar 

  • Gilotti J A, McClelland W C, Wooden J L. 2014. Zircon captures exhumation of an ultrahigh-pressure terrane, North-East Greenland Caledonides. Gondwana Res, 25: 235–256

    Google Scholar 

  • Groppo C, Rubatto D, Rolfo F, et al. 2010. Early Oligocene partial melting in the Main Central Thrust Zone (ArunValley, eastern Nepal Himalaya). Lithos, 118: 287–301

    Google Scholar 

  • Groppo C, Rolfo F, Indares A. 2012. Partial melting in the Higher Himalayan Crystallines of Eastern Nepal: The effect of decompression and implications for the’ channel flow’ model. J Petrol, 53: 1057–1088

    Google Scholar 

  • Groppo C, Rolfo F, Liu Y C, et al., 2015. P-T evolution of elusive UHP eclogites from the Luotian dome (North Dabie Zone, China): How far can the thermodynamic modeling lead us? Lithos, doi: 10.1016/j.lithos.2014.11.013

    Google Scholar 

  • Grove T L, Chatterjee N, Parman S W, et al. 2006. The influence of H2O on mantle wedge melting. Earth Plan Sci Lett, 249: 74–89

    Google Scholar 

  • Gu X F, Liu Y C, Deng L P. 2013. Geochronology and petrogenesis of eclogite from the Luotian dome, North Dabie complex zone (central China), and their element and isotope behavior during exhumation (in Chinese). Chin Sci Bull, 22: 2132–2137

    Google Scholar 

  • Guillot S, Hattori K, Agard P, et al. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Heidelberg: Springer-Verlag. 175–205

    Google Scholar 

  • Hacker B R, Liou J G. 1998. When Continent Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Dordrecht: Kluw Acad Publ. 1–323

    Google Scholar 

  • Hacker B R, Calvert A, Zhang R Y, et al. 2003. Ultrarapid exhumation of ultrahigh-pressure diamond-bearing metasedimentary rocks of the Kokchetav Massif, Kazakhstan? Lithos, 70: 61–75

    Google Scholar 

  • He Y S, Li S G, Jochen Hoefs, et al. 2013. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust. Lithos, 156–159: 204–217

    Google Scholar 

  • Hemingway B S, Bohlen S R, Hankins W B, et al. 1998. Heat capacity and thermodynamic properties for coesite and jadeite: Reexamination of the quartz-coesite equilibrium boundary. Am Mineral, 83: 409–418

    Google Scholar 

  • Hermann J, Green D H. 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 188: 149–168

    Google Scholar 

  • Hermann J, Rubatto D, Korsakov A V, et al. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib Mineral Petrol, 141: 66–82

    Google Scholar 

  • Holland T J B. 1980. The reaction albite=jadeite+quartz determined experimentally in the range 600–1200°C. Am Mineral, 65: 129–134

    Google Scholar 

  • Huerta A D, Royden L H, Hodges K V. 1998. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating. J Geophys. Res, 103: 15287–15302

    Google Scholar 

  • Hwang S L, Shen P, Chu H T, et al. 2001. Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahigh-pressure gneiss from Erzgebirge, Germany. Earth Planet Sci Lett, 188: 9–15

    Google Scholar 

  • Kalsbeek F, Thrane K, Higgins A K, et al. 2008. Polyorogenic history of the East Greenland Caledonides. In: Higgins A K, Gilotti J A, Smith M P, eds. The Greenland Caledonides—Evolution of the Northeast Margin of Laurentia. Geol Soc Am Mem, 202: 55–72

    Google Scholar 

  • Katayama I, Parkinson C D, Okamoto K, et al. 2000a. Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and politic gneiss from the Kokchetav massif, Kazakhstan. Am Mineral, 85: 1368–1374

    Google Scholar 

  • Katayama I, Zayachkovsky A A, Maruyama S. 2000b. Prograde pressure-temperature records from inclusions in zircons from ultrahigh-pressure-high-temperature rocks of the Kokchetav Massif, northern Kazakhstan. Island Arc, 9: 417–427

    Google Scholar 

  • Kelsey D E, Hand M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front, doi: 10.1016/j.gsf.2014.09.006

    Google Scholar 

  • Kennedy C S, Kennedy G G. 1976. The equilibrium boundary between graphite and diamond. J Geophys Res, 81: 2467–2470

    Google Scholar 

  • Kincaid C, Silver P. 1996. The role of viscous dissipation in the orogenic process. Earth Planet Sci Lett, 142: 271–288

    Google Scholar 

  • Kooijman E, Upadhyay D, Mezger K, et al. 2011. Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: The Kadavur anorthosite complex, southern India. Chem Geol, 290: 177–188

    Google Scholar 

  • Kostopoulos D K, Ioannidis N M, Sklavounos S A. 2000. A new occurrence of ultrahigh-pressure metamorphism, central Macedonia, Norther Greece: Evidence from graphitized diamonds? Int Geol Rev, 42: 545–554

    Google Scholar 

  • Krohe A, Mposkos E. 2002. Multiple generations of extensional detachments in the Rhodope Mountains (northern Greece): Evidence of episodic exhumation of high-pressure rocks. In: Blundell D J, Neubauer F, Von Quadt A, eds. The Timing and Location of Major Ore Deposits in an Evolving Orogen. London Geol Soc Spec Pub, 204: 151–178

    Google Scholar 

  • Kunz B E, Johnson T E, White R W, et al. 2014. Partial melting of metabasic rocks in Val Strona di Omegna, Ivrea Zone, northern Italy. Lithos, 190–191: 1–12

    Google Scholar 

  • Kylander-Clark A R C, Hacker B R, Mattinson C G. 2012. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 321–322: 115–120

    Google Scholar 

  • Labrousse L, Jolivet L, Agard P, et al. 2002. Crustal-scale boudinage and migmatization of gneiss during their exhumation in the UHP province of western Norway. Terra Nova, 14: 263–270

    Google Scholar 

  • Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171–1174

    Google Scholar 

  • Lathe C, Koch-Müller M, Wirth R, et al. 2005. The influence of OH in coesite on the kinetics of the coesite-quartz phase transition. Am Mineral, 90: 36–43

    Google Scholar 

  • Leloup P H, Ricard Y, Battaglia J, et al. 1999. Shear heating in continental strike-slip zones: Model and field examples. Geophys J Int, 136: 19–40

    Google Scholar 

  • Li S G, Xiao Y, Liu D, et al. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: Timing and processes. Chem Geol, 109: 89–111

    Google Scholar 

  • Li S G, Li Q, Hou Z, et al. 2005. Cooling history and exhumation of the ultrahigh-pressure metamorphic rocks in the Dabie Mountains, central China (in Chinese with English abstract). Acta Petrol Sin, 21: 1117–1124

    Google Scholar 

  • Li S G, He Y, Wang S. 2013. Process and mechanism of mountain-root removal of the Dabie Orogen—Constraints from geochronology and geochemistry of post-collisional igneous rocks. Chin Sci Bull, 58: 4411–4417

    Google Scholar 

  • Li W Y, Teng F Z, Xiao Y L, et al. 2011. High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet Sci Lett, 304: 224–230

    Google Scholar 

  • Li Z X, Li X H, Kinny P D, et al. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 122: 85–109

    Google Scholar 

  • Liati A, Gebauer D. 1999. Constraining the prograde and retrograde P-T-t path of Eocene HP rocks by SHRIMP dating of different zircon domains: Inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib Mineral Petrol, 135: 340–354

    Google Scholar 

  • Liati A, Gebauer D, Wysoczanski R. 2002. U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece): Evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chem Geol, 184: 281–299

    Google Scholar 

  • Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorph Geol, 30: 887–906

    Google Scholar 

  • Liu Y C, Li S G, Xu S T, et al. 2000. U-Pb zircon ages of the eclogite and tonalitic gneiss from the northern Dabie Mountains, China and multi-overgrowths of metamorphic zircons (in Chinese with English abstract). Geol J Chin Univ, 6: 417–423

    Google Scholar 

  • Liu Y C, Xu S T, Li S G, et al. 2001. Distribution and metamorphic P-T condition of the eclogites from the mafic-ultramafic belt in the northern part of the Dabie Mountains (in Chinese with English abstract). Acta Geol Sin, 75: 385–395

    Google Scholar 

  • Liu Y C, Li S, Xu S, et al. 2005. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. J Asian Earth Sci, 25: 431–443

    Google Scholar 

  • Liu Y C, Li S G, Gu X F, et al. 2007a. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. J Metamorph Geol, 25: 975–989

    Google Scholar 

  • Liu Y C, Li S G, Xu S T. 2007b. Zircon SHRIMP U-Pb dating for gneiss in northern Dabie high T/P metamorphic zone, central China: Implication for decoupling within subducted continental crust. Lithos, 96: 170–185

    Google Scholar 

  • Liu Y C, Li S G. 2008. Detachment within subducted continental crust and multi-plate successive exhumation of ultrahigh-pressure metamorphic rocks: Evidence from the Dabie-Sulu orogenic belt. Chin Sci Bull, 53: 3105–3119

    Google Scholar 

  • Liu Y C, Gu X F, Li S G, et al. 2011a. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos, 122: 107–121

    Google Scholar 

  • Liu Y C, Gu X F, Rolfo F, et al. 2011b. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures. J Asian Earth Sci, 42: 607–617

    Google Scholar 

  • Liu Y C, Deng L P, Gu X F, et al. 2014. Multistage high temperature metamorphism and partial melting in the North Dabie complex zone and the geodynamic process and tectonic significance (in Chinese with English abstract). Chin J Geol, 49: 355–367

    Google Scholar 

  • Liu Y C, Deng L P, Gu X F, et al. 2015. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature metamorphism in eclogites from the Dabie orogen, central China. Gondwana Res, 27: 410–423

    Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M, et al. 2006. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos, 90: 19–42

    Google Scholar 

  • Maruyama S, Liou J G, Zhang R. 1994. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China. Island Arc, 3: 112–121

    Google Scholar 

  • Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world, and their exhumation. Int Geol Rev, 38: 485–594

    Google Scholar 

  • Maruyama S, Parkinson C D. 2000. Overview of the geology, petrology and tectonic framework of the high-pressure-ultrahigh-pressure metamorphic belt of the Kokchetav Massif, Kazakhstan. Island Arc, 9: 439–455

    Google Scholar 

  • Massonne H J. 2001. First find of coesite in the ultrahighpressure metamorphic region of the Central Erzgebirge, Germany. Eur J Mineral, 13: 565–570

    Google Scholar 

  • Massonne H J. 2003. A comparison of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous gneisses magmatic rocks? Earth Planet Sci Lett, 216: 347–364

    Google Scholar 

  • Massonne H J, O’Brien P J. 2003. The Bohemian Massif and the NW Himalaya. In: Carswell D A, Compagnoni R, eds. Ultrahigh Pressure Metamorphism. EMU Notes Mineral, 5: 145–187

    Google Scholar 

  • Massonne H J. 2013. Constructing the pressure-temperature path of ultrahigh-pressure rocks. Elements, 9: 267–272

    Google Scholar 

  • Massonne H J, Czambor A. 2007. Geochemical signatures of Variscan eclogites from the Saxonian Erzgebirge, central Europe. Chem der Erde Geochem, 67: 69–83

    Google Scholar 

  • McClelland W C, Power S E, Gilotti J A, et al. 2006. U-Pb SHRIMP geochronology and trace element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides. In: Hacker B R, McClelland W C, Liou J G, eds. Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geol Soc Am Spec Pap, 403: 23–43

    Google Scholar 

  • Miller J A, Buick I S, Cartwright I, et al. 2002. Fluid processes during the exhumation of high-P metamorphic belts. Mineral Mag, 66: 93–119

    Google Scholar 

  • Mosenfelder J L, Bohlen S R. 1997. Kinetics of the coesite to quartz transformation. Earth Planet Sci Lett, 153: 133–147.

    Google Scholar 

  • Mosenfelder J L, Schertl H P, Smyth J R, et al. 2005. Factors in the preservation of coesite: The importance of fluid infiltration. Am Mineral, 90: 779–789

    Google Scholar 

  • Mposkos E D. 2002. Petrology of the ultra-high pressure metamorphic Kimi complex in Rhodope (N.E. Greece): A new insight into the Alpine geodynamic evolution of the Rhodope. Bull Geol Soc Greece, 34: 2169–2188

    Google Scholar 

  • Mposkos E D, Baziotis I, Palikari S et al. 2004. Alpine UHP metamorphism in the Kimi complex of the Rhodope HP province N.E. Greece: Mineralogical and textural indicators. In: Proceedings of the 32rd International Geological Congress. Florence. 18–28: 108

    Google Scholar 

  • Mposkos E D, Kostopoulos D K. 2001. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: A new ultrahigh-pressure metamorphic province established. Earth Planet Sci Lett, 192: 497–506

    Google Scholar 

  • Mposkos E D, Krohe A. 2006. Pressure-temperature-deformation paths of closely associated ultra-high-pressure (diamond-bearing) crustal and mantle rocks of the Kimi complex: Implications for the tectonic history of the Rhodope Mountains, northern Greece. Can J Earth Sci, 43: 1755–1776

    Google Scholar 

  • Mposkos E D, Wawrzenitz N. 1995. Metapegmatites and pegmatites bracketing the time of HP-metamorphism in polymetamorphic rocks of the E-Rhodope: Petrological and geochronological constraints. Geol Soc Grec Spec Publ, 2: 602–608

    Google Scholar 

  • Nakamura D, Svojtka M, Naemura K, et al. 2004. Very high-pressure (>4 GPa) eclogite associated with the Moldanubian Zone garnet peridotite (Nové Dvory, Czech Republic). J metamorph Geol, 22: 593–603

    Google Scholar 

  • Nakano N, Osanai Y, Owada M. 2007. Multiple breakdown and chemical equilibrium of silicic clinopyroxene under extreme metamorphic conditions in the Kontum Massif, central Vietnam. Am Mineral, 92: 1844–1855

    Google Scholar 

  • Nasdala L, Massonne H J. 2000. Microdiamonds from the Saxonian Erzgebirge, Germany: In situ micro-Raman characterisation. Eur J Mineral, 12: 495–498

    Google Scholar 

  • Ogasawara Y, Fukasawa K, Maruyama S. 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. Am Mineral, 87: 454–461

    Google Scholar 

  • Okamoto K, Liou J G, Ogasawara Y. 2000. Petrology of the diamond-grade eclogite in the Kokchetav Massif, northern Kazakhstan. Island Arc, 9: 379–399

    Google Scholar 

  • Patiño Douce A E. 2005. Vapor-absent melting of tonalite at 15–32 kbar. J Petrol, 46: 275–290

    Google Scholar 

  • Perraki M, Proyer A, Mposkos E, et al. 2006. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet Sci Lett, 241: 672–685

    Google Scholar 

  • Ragozin A L, Liou J G, Shatsky V S, et al. 2009. The timing of the retrograde partial melting in the Kumdy-Kol region (Kokchetav Massif, Northern Kazakhstan). Lithos, 109: 274–284

    Google Scholar 

  • Rötzler J, Kroner U. 2012. The Erzgebirge. In: Romer R L, Förster H J, Kroner U, et al., eds. Granites of the Erzgebirge: Relation of magmatism to the metamorphic and tectonic evolution of the Variscan Orogen, chapter 4, 53–71. Scientific Technical Report 12/15, GFZ German Research Centre for Geosciences

    Google Scholar 

  • Rowley D B, Xue F, Tucker R D, et al. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth Planet Sci Lett, 151: 191–203

    Google Scholar 

  • Rüpke L H, Morgan J P, Hort M, et al. 2004. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett, 223: 17–34

    Google Scholar 

  • Sawyer E W, Cesare B, Brown M. 2011. When the continental crust melts. Elements, 7: 229–234

    Google Scholar 

  • Shatsky V S, Jagoutz E, Sobolev N V, et al. 1999. Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). Contrib Mineral Petrol, 137: 185–205

    Google Scholar 

  • Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, melánge formation, and prism accretion. J Geophys Res, 91: 10229–10245

    Google Scholar 

  • Sisson T W, Grove T L. 1993a. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 113: 143–166

    Google Scholar 

  • Sisson T W, Grove T L. 1993b. Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol, 113: 167–184

    Google Scholar 

  • Skjerlie K P, Patiño Douce A E. 2002. The fluid-absent partialmelting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa; implications formelting in thickened continental crust and for subduction-zone processes. J Petrol, 43: 291–314

    Google Scholar 

  • Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641–644

    Google Scholar 

  • Sobolev N V, Shatsky V S. 1990. Diamond inclusions in garnet from metamorphic rocks: A new environment for diamond formation. Nature, 343: 742–746

    Google Scholar 

  • Stüwe K. 1998. Heat sources of Cretaceous metamorphism in the Eastern Alps—A discussion. Tectonophisics, 287: 251–269

    Google Scholar 

  • Teng F Z, Wadhwa M, Helz R T. 2007. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett, 261: 84–92

    Google Scholar 

  • Timms N E, Kinny P D, Reddy S M, et al. 2011. Relationship among titanium, rare earth elements, U-Pb ages and deformation microstructures in zircon: Implications for Ti-in-zircon thermometry. Chem Geol, 280: 33–46

    Google Scholar 

  • Tipper E T, Galy A, Bickle M J. 2006. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle. Earth Planet Sci Lett, 247: 267–279

    Google Scholar 

  • Tomkins H S, Powell R, Ellis D J. 2007. The pressure dependence of the zirconium-in-rutile thermometer. J metamorph Geol, 25: 703–713

    Google Scholar 

  • Tsai C H, Liou J G. 2000. Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie complex, central China. Am Mineral, 85: 1–8

    Google Scholar 

  • Vanderhaeghe O, Teyssier C. 2001. Partial melting and flow of orogens. Tectonophysics, 342: 451–472

    Google Scholar 

  • von Blankenburg F, Davies J. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14: 120–131

    Google Scholar 

  • Wallis S, Tsuboi M, Suzuki K, et al. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33: 129–132

    Google Scholar 

  • Wang Q, Cong B. 1999. Exhumation of UHP Terranes: A case study from the Dabie Mountains, eastern China. Int Geol Rev, 41: 994–1004

    Google Scholar 

  • Wang S J, Li S G, Chen L J, et al. 2013. Geochronology and geochemistry of leucosomes in the North Dabie Terrane, East China: Implication for post-UHPM crustal melting during exhumation. Contrib Mineral Petrol, 165: 1009–1029

    Google Scholar 

  • Warren C J, Beaumont C, Jamieson R A. 2008. Deep subduction and rapid exhumation: Role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation. Tectonics, 27, doi: 10.1029/2008TC002292

  • Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308: 841–844

    Google Scholar 

  • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol, 151: 413–433

    Google Scholar 

  • Wei C J, Zhou X W. 2003. Progresses in metamorphic phase equilibrium research (in Chinese with English abstract). Earth Sci Front, 10: 341–351

    Google Scholar 

  • Whitney D L, Teyssier C, Rey P F. 2009. The consequences of crustal melting in continental subduction. Lithosphere, 1: 323–327

    Google Scholar 

  • Whittington A G, Treloar P J. 2002. Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya. Mineral Mag, 66: 53–91

    Google Scholar 

  • Whittington A G, Hofmeister A M, Nabelek P I. 2009. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458: 319–321

    Google Scholar 

  • Wu Y B, Zheng Y F, Zhang S, et al. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting. J Metamorph Geol, 25: 991–1009

    Google Scholar 

  • Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247: 36–65

    Google Scholar 

  • Xu S T, Liu Y C, Su W, et al. 2000. Discovery of the eclogite and its petrography in the Northern Dabie Mountains. Chin Sci Bull, 45: 273–278

    Google Scholar 

  • Xu S T, Liu Y C, Chen G B, et al. 2003. New finding of microdiamonds in eclogites from Dabie-Sulu region in central-eastern China. Chin Sci Bull, 48: 988–994

    Google Scholar 

  • Xu S T, Liu Y C, Chen G B, et al. 2005. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineral Mag, 69: 509–520

    Google Scholar 

  • Xu S T, Okay A I, Ji S C, et al. 1992. Diamonds from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80–82

    Google Scholar 

  • Ye K, Cong B, Ye D. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734–736

    Google Scholar 

  • Zen E. 1988. Thermal modelling of stepwise anatexis in a thrust-thickened sialic crust. Trans R Soc Edinb-Earth Sci, 79: 223–235

    Google Scholar 

  • Zhang R Y, Liou J G, Ernst W G, et al. 1997. Metamorphic evolution of diamond-bearing and associated rocks from the Kokchetav Massif, Northern Kazakhstan. J Metamorph Geol, 15: 479–496

    Google Scholar 

  • Zhao Z F, Zheng Y F, Chen R X, et al. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim Cosmochim Acta, 71: 5244–5266

    Google Scholar 

  • Zhao Z F, Zheng Y F, Wei C S, et al. 2008. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chem Geol, 253: 222–242

    Google Scholar 

  • Zhao Z F, Zheng Y F, Zhang J, et al. 2012. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol, 328: 70–88

    Google Scholar 

  • Zheng Y F, Fu B, Gong B, et al. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 62: 105–161

    Google Scholar 

  • Zheng Y F, Zhou J B, Wu Y B, et al. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Int Geol Rev, 47: 851–871

    Google Scholar 

  • Zheng Y F, Chen R X, Zhao Z F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358

    Google Scholar 

  • Zheng Y F, Xia Q X, Chen R X, et al. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342–374

    Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377

    Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planet Space, 66: 93

    Google Scholar 

  • Zhong Z, Suo S, You Z, et al. 2001. Major constituents of the Dabie collisional orogenic belt and partial melting in the ultrahigh-pressure unit. Int Geol Rev, 43: 226–236

    Google Scholar 

  • Zong K, Liu Y, Hu Z, et al. 2010. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos, 120: 490–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiCan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Deng, L. & Gu, X. Multistage exhumation and partial melting of high-T ultrahigh-pressure metamorphic rocks in continental subduction-collision zones. Sci. China Earth Sci. 58, 1084–1099 (2015). https://doi.org/10.1007/s11430-015-5067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5067-9

Keywords

Navigation