Skip to main content
Log in

Right ventricular three-dimensional echocardiography: the current status and future perspectives

  • Review Article
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

This review focused on right ventricular (RV) three-dimensional echocardiography (3DE) and discussed the following agenda. First, we summarized the clinical RV anatomy and function-related RV3DE use followed by the explanations about 3DSTE image acquisition, including pitfall. Next, we reviewed the reliability and feasibility of RV volume and RV ejection fraction measurements during the last decade. Besides, we described the techniques that might overcome the dropout images at RV anterior and out tract including the current limitations. Finally, speckle tracking echocardiography by RV3DE and novel RV shape assessment were reviewed. This review will help you get comprehensive information on the current status and future perspectives of RV3DE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from Ostenfeld E, Carlsson M, Shahgaldi K, et al. [12] published as an open access article by Biomed Central

Fig. 3
Fig. 4
Fig. 5

modified from Addetia K, Maffessanti F, Muraru D, et al. [50] with permission from the publisher. Copyright © 2018, Journal of the American Society of Echocardiography

Similar content being viewed by others

References

  1. Takenaka K. Nimura lecture: why are you evaluating RV function in patients with pulmonary arterial hypertension. J Echocardiogr. 2019;17:1–4.

    PubMed  Google Scholar 

  2. Haddad F, Hunt SA, Rosenthal DN, et al. Right ventricular function in cardiovascular disease, part I anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    PubMed  Google Scholar 

  3. Sánchez-Quintana D, Doblado-Calatrava M, Cabrera JA, et al. Anatomical basis for the cardiac interventional electrophysiologist. Biomed Res Int. 2015;2015:547364.

    PubMed  PubMed Central  Google Scholar 

  4. Choudhary G, Malik AA, Stapleton D, et al. Assessment of right ventricle by echocardiogram. In: Lakshmanadoss U, editor. echocardiography in heart failure and cardiac electrophysiology. London: InTech; 2016 . https://doi.org/10.5772/64781(Open access article).

    Chapter  Google Scholar 

  5. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(Suppl 1):i2–13.

    PubMed  PubMed Central  Google Scholar 

  6. Atsumi A, Seo Y, Ishizu T, et al. Right ventricular deformation analyses using a three-dimensional speckle-tracking echocardiographic system specialized for the right ventricle. J Am Soc Echocardiogr. 2016;29:402–11.

    PubMed  Google Scholar 

  7. Ishizu T, Seo Y, Atsumi A, et al. Global and regional right ventricular function assessed by novel three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2017;30:1203–13.

    PubMed  Google Scholar 

  8. Sanz J, Sánchez-Quintana D, Bossone E, et al. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:1463–82.

    PubMed  Google Scholar 

  9. Weyman AE, editor. Principle and practice of echocardiography. Baltimore: Lippincott Williams & Wilkins; 1994. p. 901–921.

    Google Scholar 

  10. Leather HA, Ama' R, Missant C, et al. Longitudinal but not circumferential deformation reflects global contractile function in the right ventricle with open pericardium. Am J Physiol Heart Circ Physiol. 2006;290:H2369–75.

    CAS  PubMed  Google Scholar 

  11. Meier GD, Bove AA, Santamore WP, et al. Contractile function in canine right ventricle. Am J Physiol. 1980;239:H794–804.

    CAS  PubMed  Google Scholar 

  12. Ostenfeld E, Carlsson M, Shahgaldi K, et al. Manual correction of semi-automatic three-dimensional echocardiography is needed for right ventricular assessment in adults; validation with cardiac magnetic resonance. Cardiovasc Ultrasound. 2012;10:1. https://doi.org/10.1186/1476-7120-10-1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Medvedofsky D, Addetia K, Patel AR, et al. Novel approach to three-dimensional echocardiographic quantification of right ventricular volumes and function from focused views. J Am Soc Echocardiogr. 2015;28:1222–311.

    PubMed  Google Scholar 

  14. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.

    PubMed  Google Scholar 

  15. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19:591–600.

    PubMed  Google Scholar 

  16. Huang KC, Lin JL, Lin LC. Transthoracic echocardiography: improved practice by real-time 3D acquisition and automation. In: Dumitrescu SI, Țintoiu IC, Underwood MJ, editors. Right heart pathology: from mechanism to management. Berlin: Springer; 2018. p. 559–561.

    Google Scholar 

  17. Muraru D, Spadotto V, Cecchetto A, et al. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging. 2016;17:1279–89.

    PubMed  Google Scholar 

  18. Medvedofsky D, Mor-Avi V, Kruse E, et al. Quantification of right ventricular size and function from contrast- enhanced three-dimensional echocardiographic images. J Am Soc Echocardiogr. 2017;30:1193–202.

    PubMed  Google Scholar 

  19. Narang A, Mor-Avi V, Prado A, et al. Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J Cardiovasc Imaging. 2019;20:541–9.

    PubMed  Google Scholar 

  20. Genovese D, Rashedi N, Weinert L, et al. Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance. J Am Soc Echocardiogr. 2019;32:969–77.

    PubMed  Google Scholar 

  21. Sandstede J, Lipke C, Beer M, et al. Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol. 2000;10:438–42.

    CAS  PubMed  Google Scholar 

  22. Maceira AM, Prasad SK, Khan M, et al. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J. 2006;27:2879–88.

    PubMed  Google Scholar 

  23. Foppa M, Arora G, Gona P, et al. Right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease: the Framingham heart study. Circ Cardiovasc Imaging. 2016;9:e003810. https://doi.org/10.1161/CIRCIMAGING.115.00381.

    Article  PubMed  Google Scholar 

  24. Petersen SE, Aung N, Sanghvi MM, et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017;19:18. https://doi.org/10.1186/s12968-017-0327-9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sugeng L, Mor-Avi V, Weinert L, et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging. 2010;3:10–8.

    PubMed  Google Scholar 

  26. Park JB, Lee SP, Lee JH, et al. Quantification of right ventricular volume and function using single-beat three-dimensional echocardiography: a validation study with cardiac magnetic resonance. J Am Soc Echocardiogr. 2016;29:392–401.

    PubMed  Google Scholar 

  27. van der Zwaan HB, Helbing WA, McGhie JS, et al. Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2010;23:134–40.

    PubMed  Google Scholar 

  28. Knight DS, Grasso AE, Quail MA, et al. Accuracy and reproducibility of right ventricular quantification in patients with pressure and volume overload using single-beat three-dimensional echocardiography. J Am Soc Echocardiogr. 2015;28:363–74.

    PubMed  PubMed Central  Google Scholar 

  29. Leibundgut G, Rohner A, Grize L, et al. Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr. 2010;23:116–26.

    PubMed  Google Scholar 

  30. Laser KT, Horst JP, Barth P, et al. Knowledge-based reconstruction of right ventricular volumes using real-time three-dimensional echocardiographic as well as cardiac magnetic resonance images: comparison with a cardiac magnetic resonance standard. J Am Soc Echocardiogr. 2014;27:1087–97.

    PubMed  Google Scholar 

  31. Maffessanti F, Muraru D, Esposito R, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6:700–10.

    PubMed  Google Scholar 

  32. Tamborini G, Marsan NA, Gripari P, et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. J Am Soc Echocardiogr. 2010;23:109–15.

    PubMed  Google Scholar 

  33. Shimada YJ, Shiota M, Siegel RJ, et al. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study. J Am Soc Echocardiogr. 2010;23:943–53.

    PubMed  Google Scholar 

  34. Gulati A, Ismail TF, Jabbour A, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation. 2013;128:1623–33.

    PubMed  Google Scholar 

  35. Sabe MA, Sabe SA, Kusunose K, et al. Predictors and prognostic significance of right ventricular ejection fraction in patients with ischemic cardiomyopathy. Circulation. 2016;134:656–65.

    PubMed  Google Scholar 

  36. Pueschner A, Chattranukulchai P, Heitner JF, et al. The prevalence, correlates, and impact on cardiac mortality of right ventricular dysfunction in nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2017;10:1225–366.

    PubMed  Google Scholar 

  37. Murata M, Tsugu T, Kawakami T, et al. Prognostic value of three-dimensional echocardiographic right ventricular ejection fraction in patients with pulmonary arterial hypertension. Oncotarget. 2016;7:86781–90.

    PubMed  PubMed Central  Google Scholar 

  38. Jone PN, Schäfer M, Pan Z, et al. 3D echocardiographic evaluation of right ventricular function and strain: a prognostic study in paediatric pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2018;19:1026–33.

    PubMed  Google Scholar 

  39. Nagata Y, Wu VC, Kado Y, et al. Prognostic value of right ventricular ejection fraction assessed by transthoracic 3D echocardiography. Circ Cardiovasc Imaging. 2017. https://doi.org/10.1161/CIRCIMAGING.116.005384.

    Article  PubMed  Google Scholar 

  40. Muraru D, Badano LP, Nagata Y, et al. Development and prognostic validation of partition values to grade right ventricular dysfunction severity using 3D echocardiography. Eur Heart J Cardiovasc Imaging. 2020;21:10–211.

    PubMed  Google Scholar 

  41. Huang KC, Lin LY, Chen YS, et al. Three-dimensional echocardiography-derived right ventricular ejection fraction correlates with success of decannulation and prognosis in patients stabilized by venoarterial extracorporeal life support. J Am Soc Echocardiogr. 2018;31:169–79.

    PubMed  Google Scholar 

  42. Smith BC, Dobson G, Dawson D, et al. Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 2014;64:41–51.

    PubMed  Google Scholar 

  43. Vitarelli A, Mangieri E, Terzano C, et al. Three-dimensional echocardiography and 2D–3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. J Am Heart Assoc. 2015;4:e001584. https://doi.org/10.1161/JAHA.114.001584.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Moceri P, Duchateau N, Baudouy D, et al. Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur Heart J Cardiovasc Imaging. 2018;19:450–8.

    PubMed  Google Scholar 

  45. Badagliacca R, Reali M, Poscia R, et al. Right intraventricular dyssynchrony in idiopathic, heritable, and anorexigen-induced pulmonary arterial hypertension: clinical impact and reversibility. JACC Cardiovasc Imaging. 2015;8:642–52.

    PubMed  Google Scholar 

  46. Ryan T, Petrovic O, Dillon JC, et al. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5:918–27.

    CAS  PubMed  Google Scholar 

  47. Kang DK, Thilo C, Schoepf UJ, et al. CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging. 2011;4:841–9.

    PubMed  Google Scholar 

  48. Topilsky Y, Khanna A, Le Tourneau T, et al. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:314–23.

    PubMed  Google Scholar 

  49. Addetia K, Maffessanti F, Yamat MW, et al. Three-dimensional echocardiography-based analysis of right ventricular shape in pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging. 2016;17:564–75.

    PubMed  Google Scholar 

  50. Addetia K, Maffessanti F, Muraru D, et al. Morphologic analysis of the normal right ventricle using three-dimensional echocardiography-derived curvature indices. J Am Soc Echocardiogr. 2018;31:614–23.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Seo.

Ethics declarations

Conflict of interest

Yoshihiro Seo, Tomoko Ishizu, Masaki Ieda, and Nobuyuki Ohte declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 Right ventricular activation image derived from 3D speckle tracking echocardiography. This case has severe pulmonary arterial hypertension. Compared to other areas, the contraction at right ventricular outflow tract is delayed on the coronal plane (right upper video), showing peristalsis-like contraction, which corresponds to the red area on the polar map. See Figure 3 (MP4 2445 kb)

Supplementary file2 Right ventricular border detection by the full automatic 3D echocardiographic system. Initially, a right ventricular focused 3D image is displayed. Just 10 seconds after the instruction of a 3D right ventricular image acquisition, accurate boundaries are displayed on the short (upper and middle)- and long-axis (lower) multiplanar reconstruction images. Center images are boundaries at end diastole and the right ones are boundaries at end systole (MP4 10624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y., Ishizu, T., Ieda, M. et al. Right ventricular three-dimensional echocardiography: the current status and future perspectives. J Echocardiogr 18, 149–159 (2020). https://doi.org/10.1007/s12574-020-00468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-020-00468-8

Keywords

Navigation