Skip to main content

Advertisement

Log in

Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa

  • Review
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Maize grain yield in Africa is low, 1.5 t ha−1 compared to the global average of 4.9 t ha−1. Maize production in Africa is constrained by various abiotic (drought, soil fertility) and biotic factors (insect pests, weeds and diseases). Stem borers and postharvest insect pests play considerable roles in reducing maize yield through damaging the leaves, stems, ears, and kernels. Stem borers can cause 10–15 % yield losses while the postharvest insect pests, particularly, the larger grain borer and maize weevil, can cause 14–36 % grain losses. The use of chemical insecticides has been recommended; however, in addition to health concerns, insecticides are expensive and not accessible to smallholders. Developing high yielding insect resistant maize varieties could do much to minimize the losses. Resistance of maize to stem borers and post-harvest insect pests are genetic traits which manifests themselves in resistant varieties. Resistance is available to farmers encapsulated in the seed, which ensures that after purchasing the seed, farmers need not invest in any further inputs to control stem borers and post-harvest pests. CIMMYT and its partners have developed through conventional breeding and have deployed several hybrids and open-pollinated varieties, which are insect resistant and high yielding. Sources of maize germplasm resistant to stem borers and postharvest insect pests, and performance of the new insect resistant and high yielding maize hybrids are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu, J. F. (1986). Biology and control of the insect pests of sorghum in the Southern Guinea savanna zone of Nigeria. Zaria: Institute for Agricultural Research Samaru. 23 pp.

    Google Scholar 

  • Adugna, H., & Trond, H. (2001). Infestation, damage, and insecticidal control of the stem borer, Busseola fusca (Fuller) (Lep.; Noctuidae) on sorghum in Eritrea. Tropical Agriculture, 78, 249–54.

    Google Scholar 

  • Beck, S. D. (1965). Resistance of plants to insects. Annual Review of Entomology, 10, 07–232.

    Article  Google Scholar 

  • Bergvinson, D. J., Hamilton, R. I., & Arnason, J. T. (1995). Leaf profile of maize resistance factors to European corn borer, Ostrinia nubilalis. Journal of Chemical Ecology, 21, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Bergvinson, D. J., Arnason, J. T., & Hamilton, R. I. (1997). Phytochemical changes during recurrent selection for resistance to the European corn borer. Crop Science, 37, 1567–1572.

    Article  CAS  Google Scholar 

  • Beyene, Y., Mugo, S., Mutinda, C., Tefera, T., Karaya, H., Ajanga, S., Shuma, J., Tende, R., & Kega, V. (2011a). Genotype by environment interactions and yield stability of stem borer resistant maize hybrids in Kenya. African Journal of Biotechnology, 10, 4752–4758.

    Google Scholar 

  • Beyene, Y., Mugo, S., Gakunga, J., Karaya, H., Mutinda, C., Tefera, T., Njoka, S., Chepkesis, D., Jackson, M., Shuma, J. M., & Tende, R. (2011b). Combining ability of maize (Zea mays L.) inbred lines resistant to stem borers. African Journal of Biotechnology, 10, 4759–4766.

    Google Scholar 

  • Beyene, Y., Mugo, S., Tefera, T., Gethi, J., Karaya, H., Gakunga, J., Karaya, H., Musila, R., Muasya, W., Tende, R., & Njoka, S. V. (2012). Yield stability of stem borer resistant maize hybrids evaluated in regional trials in East Africa. African Journal of Plant Science, 6, 77–83.

    Google Scholar 

  • Boxall, R. A. (2002). Damage and loss caused by the larger grain borer Prostephanus truncatus. Integrated Pest Management Reviews, 7, 105–121.

    Article  Google Scholar 

  • Datta, K., Baisakh, N., & Maung, K. (2002). Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theoretical & Applied Genetics, 106, 1–8.

    CAS  Google Scholar 

  • De Groote, H. (2002). Maize yield losses from stem borers in Kenya. Insect Science and Its Application, 22(2), 89–96.

    Google Scholar 

  • Derera, J., Giga, P. D., & Pixley, K. (1999). Resistance of maize to the maize weevil: II. non-preference. African Crop Science Journal, 9, 441–450.

    Google Scholar 

  • Dhliwayo, T., & Pixley, K. V. (2003). Divergent selection for resistance to maize weevil in six maize popu lations. Crop Science, 43, 2043–2049.

    Article  Google Scholar 

  • Dobie, P. (1974). The susceptibility of different types of maize to postharvest infestation by Sitophilus zeamais and Sitotroga cerealella and the importance of this factor at the small-scale farm level. In E. U. Brady, J. H. Brower, P. E. Hunter, E. G. Jay, P. T. M. Lum, H. O. Lund, M. A. Mullen, & R. Davis (Eds.), Proceedings of the 1st International Working Conference on Stored-Product Entomology (pp. 98–113). Savannah: USA, IWCSPP.

    Google Scholar 

  • Food and Agricultural Organization of the United Nations (FAO). (2010). Reducing post-harvest losses in grain supply chains in Africa: Lessons learned and practical guidelines. Rome: FAO/World Bank Work. FAO Headquarters.

    Google Scholar 

  • Garcia-Lara, S., Bergvinson, D. J., Burt, A. J., Ramputh, A. I., Pontones, D. M. D., & Arnason, J. T. (2004). The role of pericarp cell wall components in maize weevil resistance. Crop Science, 44, 1546–1552.

    Article  Google Scholar 

  • Golob, P. (2002). Chemical, physical and cultural control of Prostephanus truncatus. Integrated Pest Management Reviews, 7, 245–277.

    Article  Google Scholar 

  • Gueye, M. T., Goergen, G., Badiane, D., Hell, K., & Lamboni, L. (2008). First report on occurrence of the larger grain borer Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Senegal. African Entomology, 16, 309–311.

    Article  Google Scholar 

  • Haines, C.P. (1991). Insects and arachnids of tropical stored products: their biology and identification- A training manual. Natural Resources Institute (NRI).

  • Hassan, R. M., Mekuria, M., & Mwangi, W. M. (2001). Maize breeding research in eastern and southern Africa: Current status and impacts of past investments by the public and private sectors, 1996-1997. Mexico: CIMMYT.

    Google Scholar 

  • Hodges, R. J., Dunstan, W. R., Magazini, I., & Golob, P. (1983). An outbreak of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in East Africa. Protection Ecology, 5, 1983–194.

    Google Scholar 

  • Kfir, R., Overholt, W. A., Khan, Z. R., & Polaszek, A. (2002). Biology and management of economically important lepidopteran cereal stemborers in Africa. Annual Review of Entomology, 47, 701–731.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, H. (2002). Resistance in maize to larger grain borer, Prostephanus truncatus (Horn) Coleoptera: Bostrichidae). Journal of Stored Products Research, 38, 267–280.

    Article  Google Scholar 

  • Kumar, V. K., Sharma, H. C., & Reddy, K. D. (2006). Antibiosis mechanism of resistance to spotted stem borer, Chilo partellus in sorghum, Sorghum bioclor. Crop Protection, 25, 66–72.

    Article  Google Scholar 

  • Markham, R. H., Bosque-Perez, N. A., Borgemeister, C., & Meikle, W. G. (1994). Developing pest management strategies for the maize weevil, Sitophilus zeamais, and the larger grain borer, Prostephanus truncatus, in the humid and sub-humid tropics. FAO Plant Protection Bulletin, 42, 97–116.

    Google Scholar 

  • Mihm, J. A. (1985). Breeding for host plant resistance to maize stem borers. Insect Science Application, 6, 369–377.

    Google Scholar 

  • Minja, E. M. (1990). Management of Chilo spp. infesting cereals in eastern Africa. Insect Science and Its Application, 11, 489–499.

    Google Scholar 

  • Mugo, S., Bergvinson, D. J., & Hoisington, D. (2001). Options in developing stem borer-resistant maize: CIMMYT approaches and experiences. Insect Science and Its Application, 21(4), 409–415.

    Google Scholar 

  • Mugo, S., Poland, D., Mulaa, M., Odhiambo, B., & Hoisington, D. (2003). Insect resistant maize for Africa (IRMA) Project. IRMA project document no. 15. Nairobi: CIMMYT.

    Google Scholar 

  • Mugo, S., Mulaa, M., Likhayo, P., & Gichuki, S. (2008). Insect resistant maize for Africa (IRMA) project. IRMA project document no. 30. Nairobi: CIMMYT.

    Google Scholar 

  • Muhihu, S. K., & Kibata, G. N. (1985). Developing a control programme to combat an outbreak of Prostephanus truncatus Horn (Coleoptera: Bostrichidae) in Kenya. Tropical Science, 25, 239–48.

    Google Scholar 

  • Mwololo, J. K., Mugo, S., Okori, P., Tefera, T. & Munyiri, S. W. (2010). Genetic diversity for resistance to larger grain borer in maize hybrids and open pollinated varieties in Kenya, pp. 535-539. In Second RUFORUM Biennial Meeting, 20–24 September 2010. Entebbe, Uganda.

  • Nukenine, E. N. (2010). Stored product protection in Africa: past, present and future. Julius-Kühn-Archive, 425, 26–4.

    Google Scholar 

  • Ordás, B., Butrón, A., Soengas, P., Ordás, A., & Malvar, R. A. (2002). Antibiosis of the pith maize to Sesamia nonagrioides (Lepidoptera: Noctuidae). Journal of Economic Entomology, 95(5), 1044–8.

    Article  PubMed  Google Scholar 

  • Overholt, W. A., Ngi-Song, A. J., Omwega, C. O., Kimani-Njogu, S. W., Mbapila, J., Sallam, M. N., & Ofomata, V. (1996). An ecological approach to biological control of gramineous stem borers in Africa: The introduction and establishment of Cotesia flavipes Cameron (Hymenoptera: Braconidae). In E. B. Radcliffe & W. D. Hutchison (Eds.), Radcliffe’s IPM world textbook, URL: http://ipmworld.umn.edu/. St. Paul: University of Minnesota.

    Google Scholar 

  • Polaszek, A. (1998). African cereal stem borers: Economic importance, taxonomy, natural enemies and control. Wallingford: CABI Publishing (530 p).

    Google Scholar 

  • Schneider, H., Borgemeister, C., Setamou, M., Affognon, H., Bell, A., Zweigert, M. E., Poehling, H. M., & Schulthess, F. (2004). Impact assessment of Teretrius nigrescens Lewis (Coleoptera: Histeridae), an introduced predator of the larger grain borer Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Togo and Benin. Biological Control, 30, 241–255.

    Article  Google Scholar 

  • Serratos, A., Amason, J. T., Nozzolillo, C., Lambert, J. D. H., Philogene, B. J. R., Fulcher, G., Davidson, K., Peacock, L., Atkinson, J., & Morand, P. (1987). Factors contributing to resistance of exotic maize populations to the maize weevil, Sitophilus zeamais. Journal of Chemical Ecology, 13, 751–761.

    Article  CAS  PubMed  Google Scholar 

  • Seshu Reddy, K. V. (1998). Maize and sorghum in east Africa. In A. Polaszek (Ed.), African cereal stem borers. Economic importance, taxonomy, natural enemies and control (pp. 25–27). Wallingford: CAB International.

    Google Scholar 

  • Seshu Reddy, K. V., & Sum, K. O. S. (1992). Yield-infestation relationship and determination of economic injury level of the stem-borer, Chilo partellus (Swinhoe) in three varieties of maize, Zea mays L. Maydica, 37, 371–6.

    Google Scholar 

  • Shiferaw, B., Prasanna, B., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. past successes and future challenges to the role played by maize in global food security. Food Security, 3, 307–327.

    Article  Google Scholar 

  • Smale, M., Byerlee, D. & Jayne, T. (2011). Maize revolutions in Sub-Saharan Africa. The World Bank Development Research Group, Agriculture and Rural Development Team, 34 pp.

  • Smith, M. E., Mihm, J. A., & Jewell, D. C. (1989). Breeding for multiple resistances to temperate, subtropical, and tropical maize insect pests at CIMMYT, pp. 222-234. In Toward insect resistant maize for the third world: Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects. The International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico.

  • Tefera, T. (2012). Post-harvest losses in African maize in the face of increasing food shortage. Food Security, 4, 267–277.

    Article  Google Scholar 

  • Tefera, T., Mugo, S., & Likhayo, P. (2011a). Effects of insect population density and storage time on grain damage and weight loss in maize due to the maize weevil Sitophilus zeamais and the larger grain borer Prostephanus truncatus. African Journal of Agricultural Research, 6, 2249–225.

    Google Scholar 

  • Tefera, T., Mugo, S., Likhayo, P., & Beyene, Y. (2011b). Resistance of three-way cross experimental maize hybrids to postharvest insect pests, the larger grain borer (Prostephanus truncatus) and maize weevil (Sitophilus zeamais). International Journal of Tropical Insect Sciences, 31, 3–12.

    Article  Google Scholar 

  • Tipping, P. W., Rodriguez, J. G., Poneleit, C. C., & Legg, D. E. (1988). Resistance of dent com inbreeds to oviposition by the maize weevil. Journal of the Kansas Entomological Society, 61, 131–134.

    Google Scholar 

  • Unnithan, G. C., & Seshu Reddy, K. V. (1989). Incidence, diapuase and carryover of the cereal stem borers in Rusinga Island, Kenya. Tropical Pest Management, 35, 414–419.

    Article  Google Scholar 

  • Wareing, P. (2002). Pests of durable crops- moulds. In P. Golob, G. Farrell, & J. E. Orchard (Eds.), Crop post-harvest: Science and technology volume 1: Principles and practice (pp. 120–130). Oxford: Blackwell, Sciences Ltd.

    Google Scholar 

Download references

Acknowledgments

This paper contributes to the Insect Resistant Maize for Africa Project (IRMA-III-Conventional), funded by the Syngenta Foundation for Sustainable Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadele Tefera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tefera, T., Mugo, S. & Beyene, Y. Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa. Food Sec. 8, 211–220 (2016). https://doi.org/10.1007/s12571-015-0537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-015-0537-7

Keywords

Navigation