Skip to main content

Advertisement

Log in

The role of international trade in managing food security risks from climate change

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

International trade plays an important role in facilitating global food security in the face of a changing climate. In considering this issue, it is useful to distinguish between two different time scales: inter-annual and inter-decadal. Inter-annual adjustments in international trade can play an important role in shifting supplies from food surplus regions to regions facing food deficits which emerge as a consequence of extreme weather events, civil strife, and/or other disruptions The first section of the paper explores the evidence on increased inter-annual supply side volatility, as well as historical and prospective analyses of adaptation to such volatility and the role international trade can play in mitigating the adverse impacts on food security. In the long run, we expect that the fundamental patterns of comparative advantage will be altered by the changing climate as well as availability of technology and endowments (water for irrigation, labor force, capital stock). In a freely functioning global economy, long run trade patterns will respond to this evolving comparative advantage. However, historical food trade has not been free of obstacles, with both tariff and non-tariff barriers often limiting the adjustment of trade to the changing economic landscape. This section of the paper capitalizes on a newly available library of climate impact results in order to characterize the tails (both optimistic and pessimistic) of this distribution. We then explore the potential for a more freely functioning global trading system to deliver improved long run food security in 2050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. At the time of this writing, oil prices have been falling. However, this may be a transitory phenomenon.

  2. Early work by FAO (Neiken 2003) found that the log-normal distribution has a better fit of household data on caloric consumption compared to other distributions. The log-normal is also widely used in the poverty literature to calculate the poverty headcount and poverty incidence (see Foster et al. (1984)) and similar indices can be constructed to measure the incidence and headcount of caloric undernutrition.

  3. These consist of HADGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, NorESM1-M. For convenience, these models are mentioned in the paper as HADGEM, IPSL, MIROC, GFDL, NORESM, respectively.

  4. The EPIC model also has sufficient data but it is not available in the version of the AgMIP tool that we used in this study.

  5. In Baldos and Hertel (2014) wherein market barriers are ignored, the baseline malnutrition counts by 2050 in Sub Saharan Africa and in South Asia are around 47 M to 26 M persons, respectively. The ranges of malnutrition counts relative to the future baseline given climate change are around −16 M to 13 M persons for Sub Saharan Africa and −7 M to 5 M for South Asia.

References

  • Abbott, P., Hurt, C., & Tyner, W. E. (2011). What’s driving food prices in 2011? Oak Brook: Farm Foundation.

    Google Scholar 

  • Ahmed, S. A., Diffenbaugh, N. S., & Hertel, T. W. (2009). Climate volatility deepens poverty vulnerability in developing countries. Environmental Research Letters, 4(3), 034004. doi:10.1088/1748-9326/4/3/034004.

    Article  Google Scholar 

  • Ahmed, S. A., Diffenbaugh, N. S., Hertel, T. W., Lobell, D. B., Ramankutty, N., Rios, A. R., & Rowhani, P. (2011). Climate volatility and poverty vulnerability in Tanzania. Global Environmental Change, 21(1), 46–55. doi:10.1016/j.gloenvcha.2010.10.003.

    Article  Google Scholar 

  • Anania, G. (2013). Agricultural export restrictions and the WTO: What options do policy-makers have for promoting food security? (Issue Paper No. 50) (p. 47). Geneva, Switzerland: ICTSD Programme on Agricultural Trade and Sustainable Development.

  • Anderson, K., & Nelgen, S. (2012). Agricultural trade distortions during the global financial crisis. Oxford Review of Economic Policy, 28(2), 235–260. doi:10.1093/oxrep/grs001.

    Article  Google Scholar 

  • Anderson, K., Rausser, G. C., & Swinnen, J. F. M. (2013). Political economy of public policies: insights from distortions to agricultural and food markets. Journal of Economic Literature, 51(2), 423–477.

    Article  Google Scholar 

  • Baldos, U. L. C., & Hertel, T. W. (2013). Looking back to move forward on model validation: insights from a global model of agricultural land use. Environmental Research Letters, 8(3), 034024. doi:10.1088/1748-9326/8/3/034024.

    Article  Google Scholar 

  • Baldos, U. L. C., & Hertel, T. W. (2014). Global food security in 2050: the role of agricultural productivity and climate change. Australian Journal of Agricultural and Resource Economics. doi:10.1111/1467-8489.12048.

    Google Scholar 

  • Banerjee, L. (2007). Effect of flood on agricultural wages in Bangladesh: an empirical analysis. World Development, 35(11), 1989–2009. doi:10.1016/j.worlddev.2006.11.010.

    Article  Google Scholar 

  • Burgess, R., & Donaldson, D. (2010). Can openness mitigate the effects of weather shocks? Evidence from India’s famine era. American Economic Review, 100(2), 449–453. doi:10.1257/aer.100.2.449.

    Article  Google Scholar 

  • Diffenbaugh, N. S., Pal, J. S., Trapp, R. J., & Giorgi, F. (2005). Fine-scale processes regulate the response of extreme events to global climate change. Proceedings of the National Academy of Sciences, 102(44), 15774.

    Article  CAS  Google Scholar 

  • Diffenbaugh, N. S., Pal, J. S., Giorgi, F., & Gao, X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters, 34(11), L11706.

    Article  Google Scholar 

  • Diffenbaugh, N. S., Hertel, T. W., Scherer, M., & Verma, M. (2012). Response of corn markets to climate volatility under alternative energy futures. Nature Climate Change. doi:10.1038/nclimate1491.

    PubMed  Google Scholar 

  • Disdier, A.-C., & Head, K. (2008). The puzzling persistence of the distance effect on bilateral trade. The Review of Economics and Statistics, 90(1), 37–48. doi:10.1162/rest.90.1.37.

    Article  Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science, 289(5487), 2068–2074. doi:10.1126/science.289.5487.2068.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., et al. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9), 3239–3244. doi:10.1073/pnas.1222474110.

    Article  CAS  Google Scholar 

  • FAO. (2012). FAO food security statistics. http://www.fao.org/economic/ess/en/. Accessed 12 June 2012.

  • FAO. (2014). FAOSTAT. http://faostat.fao.org/. Accessed 25 Sept 2014.

  • Foster, J., Greer, J., & Thorbecke, E. (1984). A class of decomposable poverty measures. Econometrica, 52(3), 761–766. doi:10.2307/1913475.

    Article  Google Scholar 

  • Fuglie, K. O. (2012). Productivity growth and technology capital in the global agricultural economy. In K. O. Fuglie, S. L. Wang, & V. E. Ball (Eds.), Productivity growth in agriculture: an international perspective (pp. 335–368). Cambridge: CAB International.

    Chapter  Google Scholar 

  • Griffith, R., Redding, S., & Reenen, J. V. (2004). Mapping the two faces of R&D: productivity growth in a panel of OECD industries. The Review of Economics and Statistics, 86(4), 883–895. doi:10.1162/0034653043125194.

    Article  Google Scholar 

  • Hertel, T. W., & Lobell, D. B. (2014). Agricultural adaptation to climate change in rich and poor countries: current modeling practice and potential for empirical contributions. Energy Economics. doi:10.1016/j.eneco.2014.04.014.

    Google Scholar 

  • Hertel, T. W., Keeney, R., Ivanic, M., & Winters, L. A. (2009). Why isn’t the doha development agenda more poverty friendly? Review of Development Economics, 13(4), 543–559. doi:10.1111/j.1467-9361.2008.00483.x.

    Article  Google Scholar 

  • Hertel, T. W., Burke, M. B., & Lobell, D. B. (2010). The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 20(4), 577–585. doi:10.1016/j.gloenvcha.2010.07.001.

    Article  Google Scholar 

  • Hertel, T. W., Ramankutty, N., & Baldos, U. L. C. (2014). Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proceedings of the National Academy of Sciences, 111(38), 13799–13804. doi:10.1073/pnas.1403543111.

    Article  CAS  Google Scholar 

  • IEA. (2008). World energy outlook. OECD Publishing. http://www.oecd-ilibrary.org/content/book/weo-2008-en.

  • IEA. (2012). World energy outlook. OECD Publishing. http://www.oecd-ilibrary.org/content/book/weo-2012-en.

  • IPCC. (2013). Climate change 2013: the physical science basis. In Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: impacts, adaptation, and vulnerability. In Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ivanic, M., & Martin, W. (2008). Implications of higher global food prices for poverty in low-income countries. SSRN eLibrary. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1149097. Accessed 19 May 2010.

  • Kriegler, E., O’Neill, B. C., Hallegatte, S., Kram, T., Lempert, R. J., Moss, R. H., & Wilbanks, T. (2012). The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Global Environmental Change, 22(4), 807–822. doi:10.1016/j.gloenvcha.2012.05.005.

    Article  Google Scholar 

  • Limão, N., & Venables, A. J. (2001). Infrastructure, geographical disadvantage, transport costs, and trade. World Bank Economic Review, 15(3), 451–479. doi:10.1093/wber/15.3.451.

    Article  Google Scholar 

  • Lobell, D. B., Baldos, U. L. C., & Hertel, T. W. (2013). Climate adaptation as mitigation: the case of agricultural investments. Environmental Research Letters, 8, 015012. doi:10.1088/1748-9326/8/1/015012.

    Article  Google Scholar 

  • Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M., & Hammer, G. L. (2014). Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 344(6183), 516–519. doi:10.1126/science.1251423.

    Article  CAS  PubMed  Google Scholar 

  • Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J., & Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312(5782), 1918–1921. doi:10.1126/science.1114722.

    Article  CAS  PubMed  Google Scholar 

  • Ludena, C. E., Hertel, T. W., Preckel, P. V., Foster, K., & Nin, A. (2007). Productivity growth and convergence in crop, ruminant, and nonruminant production: measurement and forecasts. Agricultural Economics, 37(1), 1–17. doi:10.1111/j.1574-0862.2007.00218.x.

    Article  Google Scholar 

  • Martin, W., & Anderson, K. (2012). Export Restrictions and Price Insulation During Commodity Price Booms. American Journal of Agricultural Economics, 94(2), 422–427. doi:10.1093/ajae/aar105.

    Article  Google Scholar 

  • Monfreda, C., Ramankutty, N., & Foley, J. A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 22, 19 PP. doi:10.1029/2007GB002947.

  • Müller, C., & Robertson, R. D. (2014). Projecting future crop productivity for global economic modeling. Agricultural Economics, 45(1), 37–50. doi:10.1111/agec.12088.

    Article  Google Scholar 

  • Müller, C., Bondeau, A., Popp, A., Waha, K., & Fader, M. (2010). Climate change impacts on agricultural yields: Background note to the World Development Report 2010 (Background Note). Germany: Potsdam Institute for Climate Impact Research.

    Google Scholar 

  • Neiken, L. (2003). FAO methodology for estimating the prevalence of undernourishment (Proceedings: Measurement and Assessment of Food Deprivation and Undernutrition). Rome, Italy: FAO.

  • Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., et al. (2014). Climate change effects on agriculture: economic responses to biophysical shocks. Proceedings of the National Academy of Sciences, 111(9), 3274–3279. doi:10.1073/pnas.1222465110.

    Article  CAS  Google Scholar 

  • O’Neill, B., Kriegler, E., Riahi, K., Ebi, K., Hallegatte, S., Carter, T., et al. (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400. doi:10.1007/s10584-013-0905-2.

    Article  Google Scholar 

  • Olmstead, A. L., & Rhode, P. W. (2011). Adapting North American wheat production to climatic challenges, 1839–2009. Proceedings of the National Academy of Sciences, 108(2), 480–485. doi:10.1073/pnas.1008279108.

    Article  CAS  Google Scholar 

  • Reilly, J., Hohmann, N., & Kane, S. (1994). Climate change and agricultural trade: who benefits, who loses? Global Environmental Change, 4(1), 24–36. doi:10.1016/0959-3780(94)90019-1.

    Article  Google Scholar 

  • Reilly, J. M., Hrubovcak, J., Graham, J., Abler, D. G., Darwin, R., Hollinger, S. E., et al. (2002). Changing climate and changing agriculture. New York: Cambridge University Press.

    Google Scholar 

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., et al. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268–3273. doi:10.1073/pnas.1222463110.

    Article  CAS  Google Scholar 

  • Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5(1), 014010. doi:10.1088/1748-9326/5/1/014010.

    Article  Google Scholar 

  • Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598. doi:10.1073/pnas.0906865106.

    Article  CAS  Google Scholar 

  • Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703–19708. doi:10.1073/pnas.0701976104.

    Article  CAS  Google Scholar 

  • SSP Database (v 0.93). (2013). https://secure.iiasa.ac.at/web-apps/ene/SspDb. Accessed 1 Oct 2014.

  • Tobey, J., Reilly, J., & Kane, S. (1992). Economic implications of global climate change for world agriculture. Journal of Agricultural and Resource Economics, 17(1), 195–204. Accessed 5 December 2014.

    Google Scholar 

  • Verma, M., Hertel, T., & Diffenbaugh, N. S. (2014). Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility. Environmental Research Letters, 9(6), 064028.

  • Villoria, N., Elliott, J., Choi, H., & Zhao, L. (2014). The AgMIP Tool: a GEOSHARE tool for aggregating outputs from the AgMIPs global gridded crop model intercomparison project. Purdue University. https://geoshareproject.org/tools/cropdatatool/.

  • WTO General Council. (2014). Decision on public stockholding for food security purposes.

Download references

Acknowledgments

The authors acknowledge support for the underlying research into the climate-food-energy-land-water nexus from U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Integrated Assessment Research Program, Grant No. DE-SC005171.

This paper was part of a workshop sponsored by the OECD Co-operative Research Programme on Biological Resource Management for Sustainable Agricultural Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uris Lantz C. Baldos.

Appendix

Appendix

Fig. 5
figure 5

Regional food security impacts of climate change under different trade regimes given LPJmL crop model and HADGEM GCM model. Green lower and red upper bounds (with and without CO2 fertilization effects, respectively) represent deviations in regional malnutrition count relative to the 2050 baseline without climate change

Fig. 6
figure 6

Food security impacts of climate change in Sub Saharan Africa under different trade regimes for each crop model and GCM model combination. Green lower and red upper bounds (with and without CO2 fertilization effects, respectively) represent deviations in regional malnutrition count relative to the 2050 baseline without climate change

Fig. 7
figure 7

Food security impacts of climate change in South Asia under different trade regimes for each crop model and GCM model combination. Green lower and red upper bounds (with and without CO2 fertilization effects, respectively) represent deviations in regional malnutrition count relative to the 2050 baseline without climate change

Fig. 8
figure 8

Food security impacts of climate change in the Rest of the World under different trade regimes for each crop model and GCM model combination. Green lower and red upper bounds (with and without CO2 fertilization effects, respectively) represent deviations in regional malnutrition count relative to the 2050 baseline without climate change

Fig. 9
figure 9

Contributions of key drivers of agriculture to changes in global malnutrition count under the LPJmL crop model and HADGEM GCM model for different trade regimes. White bars shows the change in the number of malnourished persons from 2006 to 2050 while the colored bars highlight the contribution of the key drivers of agriculture to the changes in global malnutrition count

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldos, U.L.C., Hertel, T.W. The role of international trade in managing food security risks from climate change. Food Sec. 7, 275–290 (2015). https://doi.org/10.1007/s12571-015-0435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-015-0435-z

Keywords

Navigation