Skip to main content
Log in

Effects of temperature on growth and fatty acid synthesis in the cyclopoid copepod Paracyclopina nana

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

We have used the cyclopoid copepod Paracyclopina nana to understand responses to the temperature shift. To determine the changes of molecular mechanisms, which would lead to physiological changes in P. nana, we investigated mRNA expression involved in lipogenesis, the area of lipid droplets, the ratio of fatty acids, and life parameters (growth and fecundity) in response to temperature changes (15, 20, and 30 °C) with comparative control at 25 °C. Setting the temperature 25 °C as a standard point, there were increases in mRNA expression, the area of the lipid droplets, and fatty acid composition at temperatures below the standard (15 °C), while all the markers mentioned above significantly decreased at higher temperatures than the standard (25 °C). Through fecundity and growth rate experiments, daily nauplii production was reduced and growth retardation was observed at both 15 and 20 °C, but no noticeable differences in the two parameters were observed at 30 °C compared to the control (25 °C). This study provides a better understanding of the effects of temperature on lipogenesis in copepods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Dooremalen C, Ellers J (2010) A moderate change in temperature induces changes in fatty acid composition of storage and membrane lipids in a soil arthropod. J Insect Physiol 56:178–184

    Article  PubMed  Google Scholar 

  2. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  3. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  4. Lee H-W, Ban S, Ikeda T, Matsuishi T (2003) Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. J Plankton Res 25:261–271

    Article  CAS  Google Scholar 

  5. Rhyne AL, Ohs CL, Stenn E (2009) Effects of temperature on reproduction and survival of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 292:53–59

    Article  Google Scholar 

  6. Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  PubMed  Google Scholar 

  7. Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710

    Article  Google Scholar 

  8. Cruz J, Garrido S, Pimentel MS, Rosa R, Santos AMP, Re P (2013) Reproduction and respiration of a climate change indicator species: effect of temperature and variable food in the copepod Centropages chierchiae. J Plankton Res 35:1046–1058

    Article  Google Scholar 

  9. Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295

    Article  Google Scholar 

  10. Pond DM, Tarling GA, Mayor DJ (2014) Hydrostatic pressure and temperature effects on the membranes of a seasonally migrating marine copepod. PLoS One 9:e111043

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 181–257

    Google Scholar 

  12. Behrouzian B, Buist PH (2003) Mechanism of fatty acid desaturation: a bioorganic perspective. Prostaglandins Leukot Essent Fatty Acids 68:107–112

    Article  CAS  PubMed  Google Scholar 

  13. Leonard AE, Pereira SL, Sprecher H, Huang Y-S (2004) Elongation of long-chain fatty acids. Prog Lipid Res 43:36–54

    Article  CAS  PubMed  Google Scholar 

  14. Uttaro AD (2006) Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. Life 58:563–571

    CAS  PubMed  Google Scholar 

  15. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent J (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic Krill. Can J Fish Aquat Sci 57:178–191

    Article  CAS  Google Scholar 

  16. Atkinson A, Meyer B, Stübing D, Hagen W, Schmidt K, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill at the onset of winter—II. Juveniles and adults. Limnol Oceanogr 47:953–966

    Article  Google Scholar 

  17. Pond DW (2012) The physical properties of lipids and their role in controlling the distribution of zooplankton in the oceans. J Plankton Res 34:443–453

    Article  CAS  Google Scholar 

  18. Hall JM, Parrish CC, Thompson RJ (2002) Eicosapentaenoic acid regulates scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol Bull 202:201–203

    Article  CAS  PubMed  Google Scholar 

  19. Schlechtriem C, Arts MT, Zellmer ID (2006) Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera). Lipids 41:397–400

    Article  CAS  PubMed  Google Scholar 

  20. Kattner G, Hagen W (2009) Lipids in marine copepods: latitudinal characteristics and perspective to global warming. In: Arts MT, Brett MT, Kainz M (eds) Lipids in aquatic ecosystems. Springer, New York, pp 257–280

    Chapter  Google Scholar 

  21. Lee RF, Hirota J, Barnett AM (1971) Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res 18:1147–1165

    CAS  Google Scholar 

  22. Möller KO, Schmidt JO, St John M, Temming A, Diekmann R, Peters J, Floeter J, Sell AF, Herrmann J-P, Möllmann C (2015) Effects of climate-induced habitat changes on a key zooplankton species. J Plankton Res 37:530–541

    Article  Google Scholar 

  23. Vehmaa A, Brutemark A, Engström-Öst J (2012) Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS One 7:e48538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koski M, Kuosa H (1999) The effect of temperature, food concentration and female size on the egg production of the planktonic copepod Acartia bifilosa. J Plankton Res 12:1779–1789

    Article  Google Scholar 

  25. Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar Biol 139:587–596

    Article  Google Scholar 

  26. Bunker AJ, Hirst AG (2004) Fecundity of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Mar Ecol Prog Ser 279:161–181

    Article  CAS  Google Scholar 

  27. Hirst AG, Bunker AJ (2003) Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol Oceanogr 48:1988–2010

    Article  Google Scholar 

  28. Mayor DJ, Sommer U, Cook KB, Viant MR (2015) The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Sci Rep 5:13690

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee S-H, Lee M-C, Puthumana J, Park JC, Kang S, Hwang D-S, Shin K-H, Park HG, Souissi S, Om A-S, Lee J-S, Han J (2017) Effects of salinity on growth, fatty acid synthesis, and expression of stress response genes in the cyclopoid copepod Paracyclopina nana. Aquaculture 470:182–189

    Article  CAS  Google Scholar 

  30. Lee B-Y, Kim H-S, Choi B-S, Hwang D-S, Choi AY, Han J, Won E-J, Choi I-Y, Lee S-H, Om A-S, Park HG, Lee J-S (2015) RNA-seq based whole transcriptome analysis of the cyclopoid copepod Paracyclopina nana focusing on xenobiotics metabolism. Comp Biochem Physiol D 15:12–19

    CAS  Google Scholar 

  31. Dahms H-U, Won E-J, Kim H-S, Han J, Park HG, Souissi S, Raisuddin S, Lee J-S (2016) Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing. Aquat Toxicol 180:282–294

    Article  CAS  PubMed  Google Scholar 

  32. Ki J-S, Park HG, Lee J-S (2009) The complete mitochondrial genome of the cyclopoid copepod Paracyclopina nana: a highly divergent genome with novel gene order and a typical gene numbers. Gene 435:13–22

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  34. Hama T, Handa N (1987) Pattern of organic matter production by natural phytoplankton population in a eutrophic lake. I. Intracellular products. Arch Hydrobiol 109:107–120

    CAS  Google Scholar 

  35. Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hwang D-S, Lee B-Y, Kim H-S, Lee M-C, Kyung D-H, Om A-S, Rhee J-S, Lee J-S (2014) Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus. BMC Genom 15:993

    Article  Google Scholar 

  37. Lee M-C, Han J, Lee S-H, Kim D-H, Kang H-M, Won E-J, Hwang D-S, Park JC, Om A-S, Lee J-S (2016) A brominated flame retardant 2, 2′, 4, 4′ tetrabrominated diphenylether (BDE-47) leads to lipogenesis in the copepod Tigriopus japonicus. Aquat Toxicol 178:19–26

    Article  CAS  PubMed  Google Scholar 

  38. Bell MV, Dick JR, Anderson TR, Pond DW (2007) Application of liposome and stable isotope tracer techniques to study polyunsaturated fatty acid biosynthesis in marine zooplankton. J Plankton Res 29:417–422

    Article  CAS  Google Scholar 

  39. Guillou H, Zadravec D, Martin PGP, Jacobsson A (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res 49:186–199

    Article  CAS  PubMed  Google Scholar 

  40. Nanton DA, Castell JD (1998) The effects of dietary fatty acids on the fatty acid composition of the haractacoid copepod, Tisbe sp. for use as a live food for marine fish larvae. Aquaculture 163:251–261

    Article  CAS  Google Scholar 

  41. Monroig Ó, Tocher DR, Navarro JC (2013) Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs 11:3998–4018

    Article  PubMed  PubMed Central  Google Scholar 

  42. Barbosa AD, Savage DB, Siniossoglou S (2015) Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 35:91–97

    Article  CAS  PubMed  Google Scholar 

  43. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  44. Carman KR, Thistle D, Ertman SC, Foy M (1991) Nile red as a probe forlipid-storage products in benthic copepods. Mar Ecol Prog Ser 74:307–311

    Article  CAS  Google Scholar 

  45. Williams JL, Biesiot PM (2004) Lipids and fatty acids of the benthic marine harpacticoid copepod Heteropsyllus nunni Coull during diapause: a contrast topelagic copepods. Mar Biol 144:335–344

    Article  CAS  Google Scholar 

  46. Wodtke E, Cossins AR (1991) Rapid cold-induced changes of membrane order and ∆9-desaturase activity in endoplasmic reticulum of carp liver: a time-course study of thermal acclimation. Biochim Biophys Acta 1064:343–350

    Article  CAS  PubMed  Google Scholar 

  47. Kostal V, Simek P (1998) Changes in fatty acid composition of phospholipids and triacylglycerols after cold-acclimation of an aestivating insect prepupa. J Comp Physiol B 168:453–460

    Article  CAS  Google Scholar 

  48. Chakraborty RD, Chakraborty K, Radhakrishnan EV (2007) Variation in fatty acid composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. J Agric Food Chem 55:4043–4051

    Article  CAS  PubMed  Google Scholar 

  49. Ouraji H, Fereidoni AE, Shayegan M, Asil SM (2011) Comparison of fatty acid composition between farmed and wild indian white shrimps, Fenneropenaeus indicus. Food Nutr Sci 2:824–829

    Article  CAS  Google Scholar 

  50. Zhang Z, Liu L, Xie C, Li D, Xu J, Zhang M, Zhang M (2017) Lipid contents, fatty acid profiles and nutritional quality of nine wild caught freshwater fish species of the Yangtze Basin, China. J Food Nutr Res 7:388–394

    Google Scholar 

  51. van der Meeren T, Olsen RE, Hamre K, Fyhn HJ (2008) Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274:375–397

    Article  Google Scholar 

  52. Kooijman SA, Troost TA (2007) Quantitative steps in the evolution of metabolic organisation as specified by the Dynamic Energy Budget theory. Biol Rev Camb Philos Soc 82:113–142

    Article  CAS  PubMed  Google Scholar 

  53. Yoshinaga T, Hagiwara A, Tsukamoto K (2000) Effect of periodical starvation on the life history of Brachionus plicatilis O.F. Müller (Rotifera): a possible strategy for population stability. J Exp Mar Biol Ecol 253:253–260

    Article  CAS  PubMed  Google Scholar 

  54. Yoshinaga T, Hagiwara A, Tsukamoto K (2003) Life history response and age-specific tolerance to starvation in Brachionus plicatilis O.F. Müller (Rotifera). J Exp Mar Biol Ecol 287:261–271

    Article  Google Scholar 

  55. Ikeda T, Sano F, Yamaguchi A (2007) Respiration in marine pelagic copepods: a global-bathymetric model. Mar Ecol Prog Ser 339:215–219

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their valuable comments on the manuscript. This work was made possible by a grant from the Development of Techniques for Assessment and Management of Hazardous Chemicals in the Marine Environment program of the Korean Ministry of Oceans and Fisheries funded to Jae-Seong Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SH., Lee, MC., Puthumana, J. et al. Effects of temperature on growth and fatty acid synthesis in the cyclopoid copepod Paracyclopina nana . Fish Sci 83, 725–734 (2017). https://doi.org/10.1007/s12562-017-1104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-017-1104-2

Keywords

Navigation