Skip to main content
Log in

NMR magnetization-transfer analysis of rapid membrane transport in human erythrocytes

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) magnetization-transfer (MT) experiments provide a convenient tool for studying rapid sub-second membrane-transport processes in situ in metabolically active cells. These experiments are used with membrane-permeable substances when separate (resolved) NMR signals are observed from their populations inside and outside the cells. Here, we provide a description of the theory and practice of the most common NMR MT experiments that have been used to study membrane-transport processes in human erythrocytes (red blood cells; RBCs). The procedures, involved in the analysis of the experimental data for defining mechanisms of transport, and for estimating values of kinetic parameters in the corresponding mathematical models, are given special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

B-M:

Bloch–McConnell

DST:

Differential saturation transfer

EXSY:

Exchange spectroscopy

FID:

Free induction decay

Ht :

Haematocrit

IT:

Inversion transfer

MT:

Magnetization transfer

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

RBC:

Red blood cell

RF:

Radio-frequency

ST:

Saturation transfer

References

  • Abel EW, Coston TPJ, Orrell KG, Šik V, Stephenson D (1986) Two-dimensional NMR exchange spectroscopy. Quantitative treatment of multisite exchanging systems. J Magn Reson 70:34–53

    CAS  Google Scholar 

  • Alger JR, Prestegard JH (1977) Investigation of peptide bond isomerization by magnetization transfer NMR. J Magn Reson 27:137–141

    CAS  Google Scholar 

  • Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163

    Article  PubMed  PubMed Central  Google Scholar 

  • Bain AD, Duns GJ (1997) Chemical exchange measurements in NMR. In: Batta G, Kövér KE, Szántay C (eds) Methods for structure elucidation by high-resolution NMR. Elsevier, Amsterdam, pp 227–263

    Google Scholar 

  • Bellon SF, Chen D, Johnston ER (1987) Quantitative 1D exchange spectroscopy. J Magn Reson 73:168–173

    CAS  Google Scholar 

  • Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    Article  CAS  Google Scholar 

  • Bloch R (1973) Inhibition of glucose transport in the human erythrocyte by cytochalasin B. Biochemistry 12:4799–4801

    Article  CAS  PubMed  Google Scholar 

  • Boulanger Y, Vinay P, Desroches M (1985) Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance. Biophys J 47:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bremer J, Mendz GL, Moore WJ (1984) Skewed exchange spectroscopy. Two-dimensional method for the measurement of cross relaxation in proton NMR spectroscopy. J Am Chem Soc 106:4691–4696

    Article  CAS  Google Scholar 

  • Bresciani S, Lebl T, Slawin AMZ, O’Hagan D (2010) Fluorosugars: synthesis of the 2,3,4-trideoxy-2,3,4-trifluoro hexose analogues of D-glucose and D-altrose and assessment of their erythrocyte transmembrane transport. Chem Commun 46:5434–5436

    Article  CAS  Google Scholar 

  • Brown TR (1980) Saturation transfer in living systems. Philos Trans R Soc Lond B 289:441–444

    Article  CAS  Google Scholar 

  • Bubb WA, Kirk K, Kuchel PW (1988) Ethylene glycol as a thermometer for X-nucleus spectroscopy in biological samples. J Magn Reson 77:363–368

    CAS  Google Scholar 

  • Bulliman BT, Kuchel PW, Chapman BE (1989) “Overdetermined” one-dimensional NMR exchange analysis. A 1D counterpart of the 2D EXSY experiment. J Magn Reson 82:131–138

    CAS  Google Scholar 

  • Cabantchik ZI, Rothstein A (1974) Membrane proteins related to anion permeability of human red blood cells. J Membrane Biol 15:207–226

    Article  CAS  Google Scholar 

  • Chapman BE, Kuchel PW (1990) Fluoride transmembrane exchange in human erythrocytes measured with 19F NMR magnetization transfer. Eur Biophys J 19:41–45

    Article  CAS  PubMed  Google Scholar 

  • Chu SC, Pike MM, Fossel ET, Smith TW, Balschi JA, Springer CS (1984) Aqueous shift reagents for high-resolution cationic nuclear magnetic resonance. III. Dy(TTHA)3−, Tm(TTHA)3−, and Tm(PPP)2 7−. J Magn Reson 56:33–47

    CAS  Google Scholar 

  • Claridge TD (2009) High-resolution NMR techniques in organic chemistry, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Dacie JV, Lewis SM (1975) Practical Haematology, 5th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Dahlquist FW, Longmuir KJ, Du Vernet RB (1975) Direct observation of chemical exchange by a selective pulse NMR technique. J Magn Reson 17:406–410

    CAS  Google Scholar 

  • Durrant CJ, Hertzberg MP, Kuchel PW (2003) Magnetic susceptibility: further insights into macroscopic and microscopic fields and the sphere of Lorentz. Concept Magn Reson A 18A:72–95

    Article  CAS  Google Scholar 

  • Eliav U, Naumann C, Navon G, Kuchel PW (2009) Double quantum transition as the origin of the central dip in the z-spectrum of HDO in variably stretched gel. J Magn Reson 198:197–203

    Article  CAS  PubMed  Google Scholar 

  • Engler RE, Johnston ER, Wade CG (1988) Dynamic parameters from nonselectively generated 1D exchange spectra. J Magn Reson 77:377–381

    Google Scholar 

  • Eytan GD, Kuchel PW (1999) Mechanism of action of P-glycoprotein in relation to passive membrane permeation. Int Rev Cytol 190:175–250

    Article  CAS  PubMed  Google Scholar 

  • Forsén S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901

    Article  Google Scholar 

  • Gabel SA, O’Connell TM, Murphy E, London RE (1997) Inhibition of glucose transport in human red blood cells by adenosine antagonists. Am J Physiol Cell Physiol 272:C1415–C1419

    CAS  Google Scholar 

  • Gabr RE, Weiss RG, Bottomley PA (2008) Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy. J Magn Reson 191:248–258

    Article  CAS  PubMed  Google Scholar 

  • Griffin JF, Rampal AL, Jung CY (1982) Inhibition of glucose transport in human erythrocytes by cytochalasins: a model based on diffraction studies. Proc Natl Acad Sci USA 79:3759–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RK, Gupta P (1982) Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium(III)tripolyphosphate as paramagnetic shift reagent. J Magn Reson 47:344–350

    CAS  Google Scholar 

  • Hills BP, Belton PS (1989) NMR studies of membrane transport. Ann R NMR S 21:99–159

    CAS  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two‐dimensional NMR spectroscopy. J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  • Johnston ER, Dellwo MJ, Hendrix J (1986) Quantitative 2D exchange spectroscopy using time-proportional phase incrementation. J Magn Reson 66:399–409

    CAS  Google Scholar 

  • Kell DB, Oliver SG (2014) How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol. doi:10.3389/fphar.2014.00231

    PubMed  PubMed Central  Google Scholar 

  • Kim HW, Rossi P, Shoemaker RK, DiMagno SG (1998) Structure and transport properties of a novel, heavily fluorinated carbohydrate analogue. J Am Chem Soc 120:9082–9083

    Article  CAS  Google Scholar 

  • Kirk K (1990) NMR methods for measuring membrane transport rates. NMR Biomed 3:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kirk K, Kuchel PW (1985) Red cell volume changes monitored using a new 31P NMR procedure. J Magn Reson 62:568–572

    CAS  Google Scholar 

  • Kirk K, Kuchel PW (1986) Equilibrium exchange of dimethyl methylphosphonate across the human red cell membrane measured using NMR spin transfer. J Magn Reson 68:311–318

    CAS  Google Scholar 

  • Kirk K, Kuchel PW (1988a) The contribution of magnetic susceptibility effects to transmembrane chemical shift differences in the 31P NMR spectra of oxygenated erythrocyte suspensions. J Biol Chem 263:130–134

    CAS  PubMed  Google Scholar 

  • Kirk K, Kuchel PW (1988b) Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds. Biochemistry 27:8803–8810

    Article  CAS  PubMed  Google Scholar 

  • Kirk K, Kuchel PW, Labotka RJ (1988) Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions. Biophys J 54:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchel PW (1987) Steady-state parameters of an enzyme from NMR spin transfer with thermal variation. Biochem J 244:247–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchel PW (1990) Spin-exchange NMR spectroscopy in studies of the kinetics of enzymes and membrane transport. NMR Biomed 3:102–119

    Article  CAS  PubMed  Google Scholar 

  • Kuchel PW (2015) Nuclear magnetic resonance spectroscopy. In: Clarke RJ, Khalid MAA (eds) Pumps, channels, and transporters: methods of functional analysis. Wiley, Hoboken, pp 211–243

    Chapter  Google Scholar 

  • Kuchel PW, Chapman BE (1983) NMR spin exchange kinetics at equilibrium in membrane transport and enzyme systems. J Theor Biol 105:569–589

    Article  CAS  PubMed  Google Scholar 

  • Kuchel PW, Naumann C (2008) 2H2O quadrupolar splitting used to measure water exchange in erythrocytes. J Magn Reson 192:48–59

    Article  CAS  PubMed  Google Scholar 

  • Kuchel PW, Bulliman BT, Chapman BE, Kirk K (1987a) The use of transmembrane differences in saturation transfer for measuring fast membrane transport; application to H13CO3 exchange across the human erythrocyte. J Magn Reson 74:1–11

    CAS  Google Scholar 

  • Kuchel PW, Chapman BE, Potts JR (1987b) Glucose transport in human erythrocytes measured using 13C NMR spin transfer. FEBS Lett 219:5–10

    Article  CAS  PubMed  Google Scholar 

  • Kuchel PW, Bulliman BT, Chapman BE, Mendz GL (1988) Variances of rate constants estimated from 2D NMR exchange spectra. J Magn Reson 76:136–142

    Google Scholar 

  • Kuchel PW, Chapman BE, Xu ASL (1992) Rates of anion transfer across erythrocyte membranes measured with NMR spectroscopy. In: Bamberg E, Passow H (eds) The band 3 proteins: anion transporters, binding proteins and senescent antigens. Elsevier, Amsterdam, pp 105–119

    Chapter  Google Scholar 

  • Kuchel PW, Kirk K, King GF (1994) NMR methods for measuring membrane transport. In: Hilderson HJ, Ralston GB (eds) Physicochemical methods in the study of biomembranes. Plenum, New York, pp 247–327

    Chapter  Google Scholar 

  • Kuchel PW, Chapman BE, Bubb WA, Hansen PE, Durrant CJ, Hertzberg MP (2003) Magnetic susceptibility: solutions, emulsions, and cells. Concept Magn Reson A 18A:56–71

    Article  CAS  Google Scholar 

  • Kuchel PW, Shishmarev D, Puckeridge M, Levitt MH, Naumann C, Chapman BE (2015) NMR of 133Cs+ in stretched hydrogels: one-dimensional, z- and NOESY spectra, and probing the ion’s environment in erythrocytes. J Magn Reson 261:110–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Wagner G, Ernst RR, Wüthrich K (1981) Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy: implications for studies of protein conformation. J Am Chem Soc 103:3654–3658

    Article  CAS  Google Scholar 

  • Labotka RJ (1984) Measurement of intracellular pH and deoxyhemoglobin concentration in deoxygenated erythrocytes by phosphorus-31 nuclear magnetic resonance. Biochemistry 23:5549–5555

    Article  CAS  PubMed  Google Scholar 

  • Labotka RJ, Omachi A (1987) Erythrocyte anion transport of phosphate analogs. J Biol Chem 262:305–311

    CAS  PubMed  Google Scholar 

  • Labotka RJ, Lundberg P, Kuchel PW (1995) Ammonia permeability of erythrocyte membrane studied by 14N and 15N saturation transfer NMR spectroscopy. Am J Physiol Cell Physiol 268:C686–C699

    CAS  Google Scholar 

  • Led JJ, Gesmar H (1982) The applicability of the magnetization-transfer NMR technique to determine chemical exchange rates in extreme cases. The importance of complementary experiments. J Magn Reson 49:444–463

    CAS  Google Scholar 

  • London RE (1994) In vivo NMR studies utilizing fluorinated probes. In: Gillies RJ (ed) NMR in physiology and biomedicine. Academic, San Diego, pp 263–277

    Chapter  Google Scholar 

  • London RE, Gabel SA (1989) Determination of membrane potential and cell volume by 19F NMR using trifluoroacetate and trifluoroacetamide probes. Biochemistry 28:2378–2382

    Article  CAS  PubMed  Google Scholar 

  • Maciel GE, Natterstad JJ (1965) Carbon-13 chemical shifts of the carbonyl group. III. Solvent effects. J Chem Phys 42:2752–2759

    Article  Google Scholar 

  • Macura S, Ernst RR (1980) Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy. Mol Phys 41:95–117

    Article  CAS  Google Scholar 

  • Macura S, Huang Y, Suter D, Ernst RR (1981) Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J Magn Reson 43:259–281

    CAS  Google Scholar 

  • Mariappan SVS, Rabenstein DL (1992) Analysis of inversion-magnetization-transfer experiments. J Magn Reson 100:183–188

    CAS  Google Scholar 

  • Marion D, Wüthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Bioph Res Co 113:967–974

    Article  CAS  Google Scholar 

  • MathWorks (2005) MATLAB: the language of technical computing. Desktop tools and development environment. MathWorks, Natick

    Google Scholar 

  • McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431

    Article  CAS  Google Scholar 

  • Morales MF, Horovitz M, Botts J (1962) The distribution of tracer substrate in an enzyme-substrate system at equilibrium. Arch Biochem Biophys 99:258–264

    Article  CAS  Google Scholar 

  • Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis. Springer, Berlin, pp 105–116

    Chapter  Google Scholar 

  • Morris GA, Freeman R (1978) Selective excitation in Fourier transform nuclear magnetic resonance. J Magn Reson 29:433–462

    CAS  Google Scholar 

  • Mulquiney PJ, Kuchel PW (2003) Modelling metabolism with Mathematica: detailed examples including erythrocyte metabolism. CRC, Boca Raton

    Book  Google Scholar 

  • O’Connell TM, Gabel SA, London RE (1994) Anomeric dependence of fluorodeoxyglucose transport in human erythrocytes. Biochemistry 33:10985–10992

    Article  PubMed  Google Scholar 

  • Ohuchi M, Hosono M, Furihata K, Seto H (1987) A method for pure absorption 2D spectroscopy using complex fourier transformation in both dimensions. J Magn Reson 72:279–297

    CAS  Google Scholar 

  • Pagès G, Kuchel PW (2013) Mathematical modeling and data analysis of NMR experiments using hyperpolarized 13C metabolites. Magn Reson Insights 6:13–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrin CL (1989) Optimum mixing time for chemical kinetics by 2D NMR. J Magn Reson 82:619–621

    CAS  Google Scholar 

  • Perrin CL, Dwyer TJ (1990) Application of two-dimensional NMR to kinetics of chemical exchange. Chem Rev 90:935–967

    Article  CAS  Google Scholar 

  • Perrin CL, Engler RE (1990) Weighted linear-least-squares analysis of EXSY data from multiple 1D selective inversion experiments. J Magn Reson 90:363–369

    CAS  Google Scholar 

  • Perrin CL, Gipe RK (1984) Multisite kinetics by quantitative two-dimensional NMR. J Am Chem Soc 106:4036–4038

    Article  CAS  Google Scholar 

  • Potts JR, Kuchel PW (1992) Anomeric preference of fluoroglucose exchange across human red-cell membranes: 19F-NMR studies. Biochem J 281:753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts JR, Kirk K, Kuchel PW (1989) Characterization of the transport of the nonelectrolyte dimethyl methylphosphonate across the red cell membrane. NMR Biomed 1:198–204

    Article  CAS  PubMed  Google Scholar 

  • Potts JR, Hounslow AM, Kuchel PW (1990) Exchange of fluorinated glucose across the red-cell membrane measured by 19F-NMR magnetization transfer. Biochem J 266:925–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price WS, Kuchel PW (1990) Hypophosphite transport in human erythrocytes studied by overdetermined one-dimensional NMR exchange analysis. NMR Biomed 3:59–63

    Article  CAS  PubMed  Google Scholar 

  • Puckeridge M, Chapman BE, Conigrave AD, Kuchel PW (2012) Quantitative model of NMR chemical shifts of 23Na+ induced by TmDOTP: applications in studies of Na+ transport in human erythrocytes. J Inorg Biochem 115:211–219

    Article  CAS  PubMed  Google Scholar 

  • Raftos JE, Bulliman BT, Kuchel PW (1990) Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data. J Gen Physiol 95:1183–1204

    Article  CAS  PubMed  Google Scholar 

  • Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron J-P (2004) Human Rhesus-associated glycoprotein mediates facilitated transport of NH3 into red blood cells. Proc Natl Acad Sci USA 101:17222–17227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson G, Kuchel PW, Chapman BE, Doddrell DM, Irving MG (1985) A simple procedure for selective inversion of NMR resonances for spin transfer enzyme kinetic measurements. J Magn Reson 63:314–319

    CAS  Google Scholar 

  • Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272:18982–18989

    Article  CAS  PubMed  Google Scholar 

  • Savitz D, Sidel VW, Solomon AK (1964) Osmotic properties of human red cells. J Gen Physiol 48:79–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48:286–292

    CAS  Google Scholar 

  • Stein WD (1986) Transport and diffusion across cell membranes. Academic, Orlando

    Google Scholar 

  • Stein WD, Litman T (2015) Channels, carriers, and pumps: an introduction to membrane transport, 2nd edn. Academic, San Diego

    Google Scholar 

  • Stewart IM, Chapman BE, Kirk K, Kuchel PW, Lovric VA, Raftos JE (1986) Intracellular pH in stored erythrocytes. Refinement and further characterisation of the 31P-NMR methylphosphonate procedure. BBA-Mol Cell Res 885:23–33

    CAS  Google Scholar 

  • Szekely D, Chapman BE, Bubb WA, Kuchel PW (2006) Rapid exchange of fluoroethylamine via the Rhesus complex in human erythrocytes: 19F NMR magnetization transfer analysis showing competition by ammonia and ammonia analogues. Biochemistry 45:9354–9361

    Article  CAS  PubMed  Google Scholar 

  • Wittenkeller L, Mota de Freitas D, Geraldes CFGC, Tomé AJR (1992) Physical basis for the resolution of intra- and extracellular 133Cs NMR resonances in Cs+-loaded human erythrocyte suspensions in the presence and absence of shift reagents. Inorg Chem 31:1135–1144

    Article  CAS  Google Scholar 

  • Wolfram S (2003) The Mathematica book, 5th edn. Wolfram Research, Champaign

    Google Scholar 

  • Xu ASL, Potts JR, Kuchel PW (1991) The phenomenon of separate intra- and extracellular resonances of difluorophosphate in 31P and 19F NMR spectra of erythrocytes. Magn Reson Med 18:193–198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council Discovery Project grant DP140102596 to PWK and the Leverhulme Trust grant RPG-2015-211 to PWK and Professor Bruno Linclau, who is thanked for critical reading of the draft of this manuscript. We convey our best wishes to Professor Don Winzor on his 80th birthday in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Kuchel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human erythrocytes were in accordance with the ethical standards of the University of Sydney Human Ethics Committee. Informed consent was obtained from all individual participants included in the study.

Additional information

This article is part of a Special Issue on ‘Analytical Quantitative Relations in Biochemistry’ edited by Damien Hall and Stephen Harding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishmarev, D., Kuchel, P.W. NMR magnetization-transfer analysis of rapid membrane transport in human erythrocytes. Biophys Rev 8, 369–384 (2016). https://doi.org/10.1007/s12551-016-0221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-016-0221-y

Keywords

Navigation