Skip to main content

Advertisement

Log in

A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

The waste management industry is an important employer, and exposure of waste-handling workers to microorganisms is considered an occupational health problem. Besides fungal contamination, it is important to consider the co-occurrence of mycotoxins in this setting. Forklifts with closed cabinet and air conditioner are commonly used in waste industry to transport waste and other products within the facilities, possibly increasing the risk of exposure under certain conditions. The aim of this study was to assess the fungal contamination and mycotoxin levels in filters from the air conditioning system of forklift cabinets, as an indicator to assess occupational exposure of the drivers working in a waste sorting facility. Cytotoxicity was also assessed to understand and characterize the toxicity of the complex mixtures as present in the forklift filters. Aqueous extracts of filters from 11 vehicles were streaked onto 2% malt extract agar (MEA) with chloramphenicol (0.05 g/L) media, and in dichloran glycerol (DG18) agar-based media for morphological identification of the mycobiota. Real-time quantitative PCR amplification of genes from Aspergillus sections Fumigati, Flavi, Circumdati, and Versicolores was also performed. Mycotoxins were analyzed using LC-MS/MS system. Cytotoxicity of filter extracts was analyzed by using a MTT cell culture test. Aspergillus species were found most frequently, namely Aspergillus sections Circumdati (MEA 48%; DG18 41%) and Nigri (MEA 32%; DG18 17.3%). By qPCR, only Aspergillus section Fumigati species were found, but positive results were obtained for all assessed filters. No mycotoxins were detected in aqueous filter extracts, but most extracts were highly cytotoxic (n = 6) or medium cytotoxic (n = 4). Although filter service life and cytotoxicity were not clearly correlated, the results suggest that observing air conditioner filter replacement frequency may be a critical aspect to avoid worker’s exposure. Further research is required to check if the environmental conditions as present in the filters could allow the production of mycotoxins and their dissemination in the cabinet during the normal use of the vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel Hameed A, El Gendy SA (2013) Evaluation of airborne actinomycetes at waste application facilities. Atmos Pollut Res 4:1–7

    Article  Google Scholar 

  • Alborch L, Bragulat MR, Abarca ML, Cabañes FJ (2011) Effect of waste activity, temperature and incubation time on growth and ochratoxin A production by Aspergillus niger and Aspergillus carbonarius on maize kernels. Int J Food Microbiol 147:53–57. doi:10.1016/j.ijfoodmicro.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Anyanwu EC, Campbell AW, Jones J, Ehiri J (2003) The neurological significance of abnormal natural killer cell activity in chronic toxigenic mold exposures. Sci World J 13:1128–1137. doi:10.1100/tsw.2003.98

    Article  Google Scholar 

  • Bergwall C, Stehn B (2002) Comparison of selective mycological agar media for the isolation and enumeration of xerophilic moulds and osmotolerant yeasts in granulated white sugar. Zuckerindustrie 127:259–264

    CAS  Google Scholar 

  • Brasel TL, Douglas DR, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia. Appl Environ Microbiol 71:114–122. doi:10.1128/AEM.71.1.114-122.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgel PR, Baixench MT, Amsellem M, Audureau E, Chapron J, Kanaan R (2012) High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole. Antimicrob Agents Chemother 56:869–874. doi:10.1128/AAC.05077-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capacci E, Rondelli V (2014) Tractor cab to protect the operator from hazardous substances in spray application. Proceedings International Conference of Agricultural Engineering, ref: C0372

  • Chowdhary A, Kathuria S, Randhawa HS, Gaur SN, Klaassen CH (2012) Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. J Antimicrob Chemother 67:362–366. doi:10.1093/jac/dkr443

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Perez P, Buttner MP, Stetzenbach LD (2001) Detection and quantitation of Aspergillus fumigatus in pure culture using polymerase chain reaction. Mol Cell Probes 15:81–88. doi:10.1006/mcpr.2000.0343

    Article  CAS  PubMed  Google Scholar 

  • Dagenais T, Keller N (2009) Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22:447–465. doi:10.1128/CMR.00055-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Hoog GS, Guarro J, Gebé J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands

    Google Scholar 

  • Duquenne P, Simon X, Koehler V, Goncalves-Machado S, Greff G, Nicot T, Poirot P (2012) Documentation of bioaerosol concentrations in an indoor composting facility in France. J Environ Monit 14:409–419. doi:10.1039/c2em10714g

    Article  CAS  PubMed  Google Scholar 

  • ECDC, European Centre for Disease Prevention and Control (2013) Risk assessment on the impact of environmental usage of triazoles on the development and spread of resistance to medical triazoles in Aspergillus species. http://www.ecdc.europa.eu. Accessed 19 June 2017

  • Eduard W, Halstensen A (2009) Quantitative exposure assessment of organic dust. Scand J Work Environ Health 7:30–35

    Google Scholar 

  • EPA, United States Environmental Protection Agency (2017) About the National Exposure Research Laboratory (NERL). http://www.epa.gov/nerlcwww/moldtech.htm. Accessed 19 June 2017

  • Forthomme A, Joubert A, Andrès Y, Simon X, Duquenne P, Bemer D, LeCoq L (2014) Microbial aerosol filtration: growth and release of a bacteria fungi consortium collected by fibrous filters in different operating conditions. J Aerosol Sci 72:32–46. doi:10.1016/j.jaerosci.2014.02.004

    Article  CAS  Google Scholar 

  • Gniadek A, Krzyściak P, Twarużek M, Macura AB (2017) Occurrence of fungi and cytotoxicity of the species: Aspergillus ochraceus, Aspergillus niger and Aspergillus flavus isolated from the air of hospital wards. Int J Occup Med Environ Health 30:231–239. doi:10.13075/ijomeh.1896.00841

    PubMed  Google Scholar 

  • Górny R, Harkawy A, Ławniczek-Wałczyk A, Wlazło A, Niesler A, Gołofit-Szymczak M, Cyprowski M (2016) Exposure to culturable and total microbiota in cultural heritage conservation. Int J Occup Med Environ Health 29:255–275. doi:10.13075/ijomeh.1896.00630

    Article  PubMed  Google Scholar 

  • Goyal SM, Anantharaman S, Ramakrishnan MA, Sajja S, Kim SW, Stanley NJ, Farnsworth JE, Kuehn TH, Raynor PC (2011) Detection of viruses in used ventilation filters from two large public buildings. Am J Infect Control 39:30–38. doi:10.1016/j.ajic.2010.10.036

    Article  Google Scholar 

  • Hambach R, Droste J, François G, Weyler J, van Soom U, Schryver A, Vanoeteren J, van Sprundel M (2012) Work-related health symptoms among compost facility workers: a cross-sectional study. Arch Public Health 70:13. doi:10.1186/0778-7367-70-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanelt M, Gareis M, Kollarczik B (1994) Cytotoxicity of mycotoxins evaluated by the MTT-cell culture assay. Mycopathologia 128:167–174. doi:10.1007/BF01138479

    Article  CAS  PubMed  Google Scholar 

  • Heinonen-Tanski H, Reponen T, Koivunen J (2009) Airborne enteric coliphages and bacteria in sewage treatment plants. Water Res 43:2558–2566. doi:10.1016/j.watres.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  • Heldal KK, Halstensen AS, Thorn J, Djupesland P, Wouters I, Eduard W, Halstensen TS (2003) Upper airway inflammation in waste handlers exposed to bioaerosols. Occup Environ Med 60:444–450. doi:10.1136/oem.60.6.444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoisington AJ, Maestre JP, King MD, Siegel JA, Kinney KA (2014) Impact of sampler selection on the characterization of the indoor microbiome via high-throughput sequencing. Build Environ 80:274–282. doi:10.1016/j.buildenv.2014.04.021

    Article  Google Scholar 

  • Howard SJ, Pasqualotto AC, Denning DW (2010) Azole resistance in allergic bronchopulmonary aspergillosis and Aspergillus bronchitis. Clin Microbiol Infect 16:683–688. doi:10.1111/j.1469-0691.2009.02911

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Lee CC, Li FC, Ma YP, Su Jenny HJ (2002) The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study. Atmos Environ 36:4385–4395. doi:10.1016/S1352-2310(02)00322-9

    Article  CAS  Google Scholar 

  • Jo WK, Lee JH (2008) Airborne fungal and bacterial levels associated with the use of automobile air conditioners or heaters, room air conditioners, and humidifiers. Arch Environ Occup Health 63:101–107. doi:10.3200/AEOH.63.3.101-107

    Article  PubMed  Google Scholar 

  • Johanning E, Gareis M, Nielsen K, Dietrich R, Märtlbauer E (2002) Airborne mycotoxin sampling and screening analysis. Indoor Air 2002, the 9th International Conference on Indoor Air Quality and Climate. Santa Cruz, CA. The International Academy of Indoor Air Sciences 1-6

  • Kemp SJ, Kuehn TH, Pui DY, Vesley D, Streifel AJ (1995) Filter collection efficiency and growth of microorganisms on filters loaded with outdoor air. ASHRAE Trans 101:228–238

    Google Scholar 

  • Kildesø J, Wurtz H, Nielsen KF, Wilkins CK, Gravesen S, Nielsen PA, Thranev U, Schneider T (2000) The release of fungal spores from water damaged building materials. In: Seppanen O, Sateri J. (Eds.), Proceedings of Healthy Buildings 2000, August 6–10, 2000, Espoo, Finland, SYI Indoor Air Information Oy, Helsinki, 313–318

  • King MD, McFarland AR (2011) Bioaerosol sampling with a wetted wall cyclone: cell culturability and DNA integrity of Escherichia coli bacteria. Aerosol Sci Technol 46:82–93. doi:10.1080/02786826.2011.605400

    Article  CAS  Google Scholar 

  • Korzeniewska E, Filipkowska Z, Gotkowska-Płachta A, Janczukowicz W, Rutkowski B (2008) Bacteriological pollution of the atmospheric air at the municipal and dairy wastewater treatment plant area and in its surroundings. Arch Environ Prot 34:13–23

    Google Scholar 

  • Korzeniewska E, Filipkowska Z, Gotkowska-Płachta A, Janczukowicz W, Dixon B, Czułowska M (2009) Determination of emitted airborne microorganisms from a BIO-PAK wastewater treatment plant. Water Res 43:2841–2851. doi:10.1016/j.watres.2009.03.050

    Article  CAS  PubMed  Google Scholar 

  • Lavoie J, Dunkerley CJ, Kosatsky T, Dufresne A (2006) Exposure to aerosolized bacteria and fungi among collectors of commercial, mixed residential, recyclable and compostable waste. Sci Total Environ 370:23–28. doi:10.1016/j.scitotenv.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li M, Shen F, Zou Z, Yao M, Wu C (2013) Characterization of biological aerosol exposure risks from automobile air conditioning system. Environ Sci Technol 47:10660–10666. doi:10.1021/es402848d

    CAS  PubMed  Google Scholar 

  • Lockhart SR, Frade JP, Etienne KA, Pfaller MA, Diekema DJ, Balajee SA (2011) Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother 55:4465–4468. doi:10.1128/AAC.00185-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen AM, Alwan T, Ørberg A, Uhrbrand K, Jørgensen MB (2016) Waste workers’ exposure to airborne fungal and bacterial species in the truck cab and during waste collection. Ann Occup Hyg 60:651–668. doi:10.1093/annhyg/mew021

    Article  PubMed  PubMed Central  Google Scholar 

  • Maličev E, Chowdhury H, Maček P, Sepčić K (2007) Effect of ostreolysin, an Asp-hemolysin isoform, on human chondrocytes and osteoblasts, and possible role of Asp-hemolysin in pathogenesis. Med Mycol 45:123–130. doi:10.1080/13693780601039615

    Article  PubMed  Google Scholar 

  • Malta-Vacas J, Viegas S, Sabino R, Viegas C (2012) Fungal and microbial volatile organic compounds exposure assessment in a waste sorting plant. J Toxicol Environ Health A 75:1410–1417. doi:10.1080/15287394.2012.721175

    Article  CAS  PubMed  Google Scholar 

  • Mayer Z, Bagnara A, FaÅNrber P, Geisen R (2003) Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods. Int J Food Microbiol 82:143–151. doi:10.1016/S0168-1605(02)00250-7

    Article  CAS  PubMed  Google Scholar 

  • Mayer S, Vishwanath V, Sulyok M (2012) Airborne workplace exposure to microbial metabolites in waste sorting plants. In: Johanning E, Morrey PR, Auger P (eds) Bioaerols. Fungal Research Group Foundation Inc., Albany, NY

    Google Scholar 

  • McCormick A, Loeffler L, Ebel F (2010) Aspergillus fumigatus: contours of an opportunistic human pathogenic. Cell Microbiol 12:1535–1543. doi:10.1111/j.1462-5822.2010.01517.x

    Article  CAS  PubMed  Google Scholar 

  • Miaśkiewicz-Peska E (2011) Effect of antimicrobial air filter treatment on bacterial survival. Fibres Text East Eur 19:73–77

    Google Scholar 

  • Mortensen KL, Mellado E, Lass-Flörl C, Rodriguez-Tudela JL, Johansen HK (2010) Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrob Agents Chemother 54:4545–4549. doi:10.1128/AAC.00692-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen EM, Nielsen BH, Breum NO (1995) Occupational bioaerosol exposure during collection of household waste. Ann Agric Environ Med 2:53–59. doi:10.1128/AAC.00692-10

    Google Scholar 

  • Noris F, Siegel JA, Kinney KA (2011) Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmos Environ 45:338–346. doi:10.1016/j.atmosenv.2010.10.017

    Article  CAS  Google Scholar 

  • Park DU, Ryu SH, Kim SB, Yoon CS (2011) An assessment of dust, endotoxin, and microorganism exposure during waste collection and sorting. J Air Waste Manage Assoc 61:461–468

    Article  CAS  Google Scholar 

  • Pasanen AL, Nikulin M, Tuomainen M, Parikka P, Hintikka EL (1993) Laboratory experiments on membrane filter sampling of airborne mycotoxins produced by Stachybotrys atra Corda. Atmos Environ 27:9–13. doi:10.1016/0960-1686(93)90065-7

    Article  Google Scholar 

  • Paterson RRM, Lima N (2010) How will climate change affect mycotoxins in food? Food Res Int 43:1902–1914. doi:10.1016/j.foodres.2009.07.010

    Article  CAS  Google Scholar 

  • Pieckova E (2012) Adverse health effects of indoor moulds. Arh Hig Rada Toksikol:63545–63549. doi:10.2478/10004-1254-63-2012-2221

  • Pillai SD, Ricke SC (2002) Bioaerosols from municipal and animal wastes: background and contemporary issues. Can J Microbiol 48:681–696. doi:10.1139/w02-070

    Article  CAS  PubMed  Google Scholar 

  • Pinto MJ, Veiga JM, Fernandes P, Ramos C, Gonçalves S, Velho MM, Guerreiro JS (2015) Airborne microorganisms associated with packaging glass sorting facilities. J Toxicol Environ Health Part A 78:685–696. doi:10.1080/15287394.2015.1021942

    Article  CAS  PubMed  Google Scholar 

  • Poulsen OM, Breum NO, Ebbehøj N, Hansen AM, Ivens UI, van Lelieveld D, Malmros P, Matthiasen L, Nielsen BH, Nielsen EM (1995a) Collection of domestic waste. Review of occupational health problems and their possible causes. Sci Total Environ 170:1–19. doi:10.1016/0048-9697(95)04524-5

    Article  CAS  PubMed  Google Scholar 

  • Poulsen OM, Breum NO, Ebbehøj N, Hansen AM, Ivens UI, van Lelieveld D, Malmros P, Matthiasen L, Nielsen BH, Nielsen EM (1995b) Sorting and recycling of domestic waste. Review of occupational health problems and their possible causes. Sci Total Environ 168:33–56. doi:10.1016/0048-9697(95)04521-2

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Monzon A, Cuenca-Estrella M (2008) Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigates. Antimicrob Agents Chemother 52:2468–2472. doi:10.1128/AAC.00156-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113:1014–1026. doi:10.1111/j.1365-2672.2012.05384.x

    Article  CAS  PubMed  Google Scholar 

  • Simmons RB, Crow SA (1995) Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems. J Ind Microbiol 14:41–45. doi:10.1007/BF01570065

    Article  CAS  PubMed  Google Scholar 

  • Snelders E, van der Lee HA, Kuijpers J, Rijs AJMM, Varga J (2008) Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 5:1629–1637. doi:10.1371/journal.pmed.0050219

    Article  CAS  Google Scholar 

  • Stanzani M, Orciuolo E, Lewis R, Kontoyiannis DP, Martins SL, St John LS, Komanduri KV (2005) Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood 105:2258–2265. doi:10.1182/blood-2004-09-3421

    Article  CAS  PubMed  Google Scholar 

  • Thirumala S, Manjunatha Reddy AH, Nathu P, Aravinda HB (2012) Study of airborne fungi at solid waste generation sites of Davanagere city, Karnataka, India. Int J Res Environ Sci Technol 2:17–21

    Google Scholar 

  • Van der Linden JW, Arendrup MC, Verweij PE et al (2015) Prospective international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis 21:1041–1044. doi:10.3201/eid2106.140717

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Kampen V, Hoffmeyer F, Deckert A, Kendzia B, Casjens S, Neumann HD, Buxtrup M, Willer E, Felten C, Schöneich R, Brüning T, Raulf M, Bünger J (2016) Effects of bioaerosol exposure on respiratory health in compost workers: a 13-year follow-up study. Occup Environ Med 73:829–837. doi:10.1136/oemed-2016-103692

    PubMed  Google Scholar 

  • Varga J, Baranyi N, Chandrasekaran M, Vágvölgyi C, Kocsubé S (2015) Mycotoxin producers in the Aspergillus genus: an update. Acta Biol Szeged 59:151–167

    Google Scholar 

  • Verweij PE, Chowdhary A, Melchers WJ, Meis JF (2016) Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 62:362–368. doi:10.1093/cid/civ885

    Article  PubMed  Google Scholar 

  • Viegas C, Gomes AQ, Abegão J, Sabino R, Graça T, Viegs S (2014a) Assessment of fungal contamination in waste sorting and incineration—case study in Portugal. J Toxicol Environ Health A 77:57–68. doi:10.1080/15287394.2014.865583

    Article  CAS  PubMed  Google Scholar 

  • Viegas S, Veiga L, Figueiredo P, Almeida A, Carolino E, Viegas C (2014b) Assessment of workers’ exposure to aflatoxin B1 in a Portuguese waste industry. Ann Occup Hyg 59:173–181. doi:10.1093/annhyg/meu082

    PubMed  Google Scholar 

  • Viegas C, Faria T, dos Santos M, Carolino E, Quintal Gomes A, Sabino R, Viegas S (2015) Fungal burden in waste industry: an occupational risk to be solved. Environ Monit Assess 187:199. doi:10.1007/s10661-015-4412-y

    Article  PubMed  Google Scholar 

  • Viegas C, Quintal Gomes A, Faria T, Sabino R (2016) Prevalence of Aspergillus fumigatus complex in waste sorting and incineration plants: an occupational threat. Int J Environ Waste Manag 16:353–369. doi:10.1504/IJEWM.2015.074939

    Article  Google Scholar 

  • Viegas C, Faria T, Aranha Caetano L, Carolino E, Quintal Gomes A, Viegas S (2017a) Aspergillus prevalence in different occupational settings. J Occup Environ Hyg. doi:10.1080/15459624.2017.1334901

  • Viegas C, Faria T, Aranha Caetano L, E Carolino, Viegas S (2017b) Pilot study regarding vehicles cabinets and elevator: neglected workstations in occupational exposure assessment? Occupational safety and hygiene IV Arezes et al. (Eds.) CRC Press. Taylor and Francis Group, London: 283–287. ISBN: 978-1-138-05761-6

  • Viegas S, Aranha Caetano L, Korkalainen M, Faria T, Pacífico C, Carolino E, Gomes AQ, Viegas C (2017c) Cytotoxic and inflammatory potential of air samples from occupational settings with exposure to organic dust. Toxics 5:1–16. doi:10.3390/toxics5010008

    Article  Google Scholar 

  • Vonberg RP, Gastmeier P, Kenneweg B, Holdack-Janssen H, Sohr D, Chaberny IF (2010) The microbiological quality of air improves when using air conditioning systems in cars. BMC Infect Dis 10:146. doi:10.1186/1471-2334-10-146

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YF, Tsai CH, Huang YT, Chao HR, Tsou TC, Kuo YM, Wang LC, Chen SH (2013) Size distribution of airborne fungi in vehicles under various driving conditions. Arch Environ Occup Health 68:95–100. doi:10.1080/19338244.2011.650798

    Article  PubMed  Google Scholar 

  • Wouters IM, Spaan S, Douwes J, Doekes G, Heederik D (2006) Overview of personal occupational exposure levels to inhalable dust, endotoxin, beta(1–>3)-glucan and fungal extracellular poly-saccharides in the waste management chain. Ann Occup Hyg 50:39–53. doi:10.1093/annhyg/mei047

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Instituto Politécnico de Lisboa, Lisbon, Portugal, for funding the Project “Waste Workers’ Exposure to Bioburden in the Truck Cab during Waste Management - W2E Bioburden” (IPL/2016/W2E_ESTeSL) and also to Occupational Health Services from the company that provided the forklift filters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Viegas.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viegas, C., Faria, T., de Oliveira, A.C. et al. A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities. Mycotoxin Res 33, 285–295 (2017). https://doi.org/10.1007/s12550-017-0288-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-017-0288-8

Keywords

Navigation