Skip to main content
Log in

Fungal burden in waste industry: an occupational risk to be solved

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m−3 before cleaning and from 220 to 2,460 CFU m−3 after cleaning procedures. Surfaces presented results that ranged from 29 × 104 to 109 × 104 CFU m−2 before cleaning and from 11 × 104 to 89 × 104 CFU m−2 after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alastruey-Izquierdo, A., Mellado, E., Peláez, T., Pemán, J., Zapico, S., Alvarez, M., Rodríguez-Tudela, J. L., & Cuenca-Estrella, M. (2013). Population-based survey of filamentous fungi and antifungal resistance in Spain. Antimicrobial Agents and Chemotherapy, 57(7), 380–3387.

    Article  Google Scholar 

  • Albercht, A., Kiel, K., & Kolk, A. (2007). Strategies and methods for investigation of airborne biological agents from work environments in Germany. International Journal of Occupational Safety and Ergonomics, 13(2), 201–213.

    Article  Google Scholar 

  • Alborch, L., Bragulat, M. R., Castellá, G., Abarca, M. L., & Cabañes, F. J. (2012). Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain. Food Microbiology. doi:10.1016/j.fm.2012.04.014.

    Google Scholar 

  • Allermann, L., & Poulsen, O. M. (2000). Inflammatory potential of dust from waste handling facilities measured as IL-8 secretion from lung epithelial cells in vitro. The Annals of Occupational Hygiene, 44(4), 259–269.

    Article  CAS  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.

    CAS  Google Scholar 

  • American Conference of Governmental Industrial Hygienists. (1989). Guidelines for the assessment of bioaerosols in the indoor environment. Cincinnati, Ohio: American Conference of Governmental Industrial Hygienists.

    Google Scholar 

  • Beaumont, F. (1988). Clinical manifestation of pulmonary Aspergillus infections. Mycoses, 31, 15–20.

    Google Scholar 

  • Bellanger, A. P., Reboux, G., Murat, J. B., Bex, V., & Millon, L. (2010). Detection of Aspergillus fumigatus by quantitative polymerase chain reaction in air samples impacted on low-melt agar. American Journal of Infection Control, 38, 195–198.

    Article  CAS  Google Scholar 

  • Bernstein, R. S., Sorensen, W. G., Garabrant, D., Reaux, C., & Treitman, R. D. (1983). Exposure to respirable, airborne Penicillium from a contaminated ventilation system: clinical, environmental and epidemiological aspects. American Industrial Hygiene Association Journal, 44, 161–169.

    Article  CAS  Google Scholar 

  • Bornehag, C. G., Sundell, J., Bonini, S., Custovic, A., Malmberg, P., Skerfving, S., Sigsgaard, T., & Verhoeff, A. (2004). Dampness in buildings as a risk factor for health effects, EUROEXPO: a multidisciplinary review of the literature (1998–2000) on dampness and mite exposure in buildings and health effects. Indoor Air, 14, 243–257.

    Article  CAS  Google Scholar 

  • Bünger, J., Antlauf-Lammers, M., Schulz, T., Westphal, G., Müller, M., Ruhnau, P., & Hallier, E. (2000). Health complaints and immunological markers of exposure to bioaerosols among biowaste collectors and compost workers. Occupational and Environmental Medicine, 57, 458–464.

    Article  Google Scholar 

  • Carlile, M. J., Watkinson, S. C., & Gooday, G. W. (2001). The fungi. London, England: Academic.

    Google Scholar 

  • Cruz-Perez, P., Buttner, M. P., & Stetzenbach, L. D. (2001a). Detection and quantitation of Aspergillus fumigatus in puré culture using polymerase chain reaction. Mol Cell Probes, 15, 81–88.

  • Cruz-Perez, P., Buttner, M. P., & Stetzenbach, L. D. (2001b). Specific detection of Stachybotrys chartarum pure culture using quantitative polymerase chain reaction. Molecular and Cellular Probes, 15, 129–138.

  • Degen, G. H., Blaskewicz, M., Lektarau, Y., GrLiner, C. (2003). Ochratoxin A Analyses of blood samples from workers at waste. Mycotoxin Research. Vol. 19.

  • De Hoog, C., Guarro, J., Gené, G., & Figueiras, M. (2000). Atlas of clinical fungi. 2nd. ed. Utrecht: Centraalbureau voor Schimmelcultures.

  • Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: progress and prospects. Annals of Occupational Hygiene, 47, 187–200.

    Article  CAS  Google Scholar 

  • Duquenne, P., Simon, X., Koehler, V., Goncalves-Machado, S., Greff, G., Nicot, T., & Poirot, P. (2012). Documentation of bioaerosol concentrations in an indoor composting facility in France. Journal of Environmental Monitoring, 14, 409–419.

    Article  CAS  Google Scholar 

  • Duchaine, C., & Meriaux, A. (2001). The importance of combining air sampling and surface analysis when studying problematic houses for mold biodiversity determination. Aerobiology, 17, 121–125.

    Article  Google Scholar 

  • Epstein, E. (1994). Composting and bioaerosols. Public Health issues. BioCycle, 51–58.

  • Fischer, G., & Dott, W. (2003). Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Archives of Microbiology, 179, 75–82.

    Article  CAS  Google Scholar 

  • Goyer, N., Lavoie, J., Lazure, L., Marchand, G. (2001). Bioaerosols in the Workplace. Bibliothètec nationlae du Québec.

  • Grisoli, P., Rodolfi, M., Villani, S., Grigani, E., Cottica, D., Berri, A., Picco, A. M., & Dacarro, C. (2009). Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environmental Research, 109, 135–142.

    Article  CAS  Google Scholar 

  • Halstensen, A. S. (2008). Species-specific fungal DNA in airborne dust as surrogate for occupational mycotoxin exposure? International Journal of Molecular Sciences, 9, 2543–2558.

    Article  CAS  Google Scholar 

  • Hawksworth, D. L. (1991). The fungal dimension of biodiversity: magnitude, significance and conservation. Mycological Research, 95, 641–655.

    Article  Google Scholar 

  • Heida, H., Bartman, F., & Vander Zee, S. C. (1995). Occupational exposure and indoor air quality monitoring in a composting facility. American Industrial Hygiene Association Journal, 56, 39–43.

    Article  CAS  Google Scholar 

  • Heldal, K., Halstensen, A. S., Thorn, J., Djupesland, P., Wouters, I., Eduard, W., et al. (2003). Upper airway inflammation in waste handlers exposed to bioaerosols. Occupational and Environmental Medicine, 60, 444–450.

    Article  CAS  Google Scholar 

  • Hunt, J., Boddy, L., Randerson, P. F., & Rogers, H. J. (2004). An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microbial Ecology, 47, 385–395.

    Article  CAS  Google Scholar 

  • Kernaghan, G., Sigler, L., & Khasa, D. (2003). Mycorrhizal and root endophytic fungi of containerized Picea glauca seedlings assessed by rDNA sequence analysis. Microbial Ecology, 45, 128–136.

    Article  CAS  Google Scholar 

  • Kiviranta, H., Tuomainen, A., Reiman, M., Laitinen, S., Nevalainen, A., & Liesivuori, J. (1995). Exposure to airborne microorganisms and volatile organic compounds in different types of waste handling. Annals of Agricultural and Environmental Medicine, 6, 39.

    Google Scholar 

  • Klánová, K., & Hollerová, J. (2003). Hospital indoor environment: screening for micro-organisms and particulate matter. Indoor and Built Environment, 12(1–2), 61–67.

    Article  Google Scholar 

  • Klarić, M. S. (2012). Adverse effects of combined mycotoxins. Archives of Industrial Hygiene and Toxicology, 63, 519–530.

    Google Scholar 

  • Lydolph, M. C., Jacobsen, J., Arctander, P., Gilbert, M. T., Gilichinsky, D. A., Hansen, A. J., Willerslev, E., & Lange, L. (2005). Beringian paleoecology inferred from permafrost-preserved fungal DNA. Applied and Environmental Microbiology, 71, 1012–1017.

    Article  CAS  Google Scholar 

  • MacNeil, L., Kauri, T., & Robertson, W. (1995). Molecular techniques and their potential application in monitoring the microbiological quality of indoor air. Canadian Journal of Microbiology, 41, 657–665.

    Article  CAS  Google Scholar 

  • Magnolia, C., Astorecaa, A., Ponsonea, M. L., Fernández-Juria, M. G., Barberisa, C., & Dalceroa, A. M. (2007). Ochratoxin A and Aspergillus section Nigri in peanut seeds at different months of storage in Córdoba, Argentina. International Journal of Food Microbiology, 119(3), 213–218.

    Article  Google Scholar 

  • Malmros, P., Sigsgaard, T., & Bach, B. (1992). Occupational health problems due to garbage sorting. Waste Management & Research, 10, 227–234.

    Article  CAS  Google Scholar 

  • Malta-Vacas, J., Viegas, S., Sabino, R., & Viegas, C. (2012). Fungal and microbial volatile organic compounds exposure assessment in a waste sorting plant. Journal of Toxicology and Environmental Health, Part A, 75, 1410–1417.

    Article  CAS  Google Scholar 

  • Marchand, G., Lavoie, J., & Lazure, L. (1995). Evaluation of bioaerosols in a municipal solid waste recycling and composting plant. Journal of the Air & Waste Management Association, 45, 778–781.

    Article  CAS  Google Scholar 

  • Mayeux, P. R. (1997). Pathology of the lipopolysaccharide. Journal of Toxicology and Environmental Health, Part A, 51, 415–435.

    Article  CAS  Google Scholar 

  • Mayer, Z., Bagnara, A., Farber, P., & Geisen, R. (2003). Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic 555 pathway by real-time PCR, and its correlation to the CFU of Aspergillus flavus in foods. International Journal of Food Microbiology, 82, 143–151.

  • O’Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J. M., & Vilgalys, R. (2005). Fungal community analysis by large-scale sequencing of environmental samples. Applied and Environmental Microbiology, 71, 5544–5550.

    Article  Google Scholar 

  • Okoth, S., Nyongesa, B., Ayugi, V., Kang'ethe, E., Korhonen, H., & Joutsjoki, V. (2012). Toxigenic potential of Aspergillus species occurring on maize kernels from two agro-ecological zones in Kenya. Toxins (Basel), 4(11), 991–1007.

    Article  CAS  Google Scholar 

  • Oliver, W. O., Jr. (1994). The Aspergillus fumigatus problem. Compost Science & Utilization, 2, 27–31.

    Article  Google Scholar 

  • Park, D., Ryu, S., Kim, S., & Yoon, C. (2001). An assessment of dust, endotoxin, and microorganism exposure during waste collection and sorting. Journal of the Air & Waste Management Association, 61, 461–468.

    Article  Google Scholar 

  • Pitka¨ranta, M., Meklin, T., Hyva¨rinen, A., Paulin, L., Auvinen, P., Nevalainen, A., Rintala, H. (2008). Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative pcr, and culture. Applied and Environmental Microbiology. 233–244.

  • Persoons, R., Parat, S., Stoklov, M., Perdrix, A., & Maitre, A. (2010). Critical working tasks and determinants of exposure to bioaerosols and MVOC at composting facilities. International Journal of Hygiene and Environmental Health, 213, 338–347.

    Article  CAS  Google Scholar 

  • Polizzi, V., Adams, A., De Saeger, S., Peterghem, C. V., Moretti, A., & De Kimpe, N. (2012). Influence of various growth parameters on fungal growth and volatile metabolite production by indoor moulds. Science of the Total Environment, 414, 277–286.

    Article  CAS  Google Scholar 

  • Poulsen, O., Breum, O., Ebbehøj, N., Hansen, A., Ivens, I., Van Lelieveld, D., Malmros, P., Matthiasen, L., Nielsen, H., & Nielsen, M. (1995). Collection of domestic waste. Review of occupational health problems and their possible causes. Science of the Total Environment, 18, 1–19.

    Google Scholar 

  • Sabino, R., Faísca, V., Carolino, E., Veríssimo, C., & Viegas, C. (2012). Occupational exposure to aspergillus by swine and poultry farm workers in Portugal. Journal of Toxicology and Environmental Health, Part A, 75, 1381–1391.

    Article  CAS  Google Scholar 

  • Seedorf, J., Hartung, J., Schröder, M., Linkert, K. H., Phillips, V. R., & Holden, M. R. (1998). Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Northern Europe. Journal of Agricultural Engineering Research, 70, 97–109.

    Article  Google Scholar 

  • Speijers, G. J. A., & Speijers, M. H. M. (2004). Combined toxic effects of mycotoxins. Toxicology Letters, 153, 91–98.

    Article  CAS  Google Scholar 

  • Stetzenbach, L., Buttner, M., & Cruz, P. (2004). Detection and enumeration of airborne biocontaminants. Current Opinion in Biotechnology, 15, 170–174.

    Article  CAS  Google Scholar 

  • Thrane, U., Adler, A., Clasen, P. E., Galvano, F., Langseth, W., Lew, H., et al. (2004). Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. International Journal of Food Microbiology, 95, 257–266.

    Article  CAS  Google Scholar 

  • Tolvanen, O. K. (2001). Airborne bio-aerosols and noise in a dry waste treatment plant in Pietarsaari, Finland. Waste Management and Research, Solid Waste Association of North America (SWANA), 19, 108–114.

    CAS  Google Scholar 

  • Tolvanen, O. K. (2004). Exposure to bioaerosols and noise at a Finnish dry waste treatment plant. Waste Management & Research, 22, 346–357.

    Article  Google Scholar 

  • Viegas, S., Veiga, L., Malta-Vacas, J., Sabino, R., Figueredo, P., Almeida, A., et al. (2012a). Occupational exposure to aflatoxin (AFB1) in poultry production. Journal of Toxicology and Environmental Health, Part A, 75, 1330–1340.

    Article  CAS  Google Scholar 

  • Viegas, S., Veiga, L., Figueiredo, P., Almeida, A., Carolino, E., Viegas, C. (2014). Assessment of workers’ exposure to aflatoxin B1 in a Portuguese waste industry. Annals of Occupational Hygiene. 1–9 doi:10.1093/annhyg/meu082.

  • Viegas, C., Carolino, E., Malta-Vacas, J., Sabino, R., Viegas, S., & Veríssimo, C. (2012b). Fungal contamination of poultry litter: a public health problem. Journal of Toxicology and Environmental Health, Part A, 75, 1341–1350.

    Article  CAS  Google Scholar 

  • Viegas, S., Sabino, R., Veríssimo, C., Monteiro, A., & Viegas, C. (2012c). Fungi, MVOC’s and dust exposure assessment in poultry production. Mycoses, 55(Suppl 4), 323.

    Google Scholar 

  • Viegas, C., Carolino, E., Sabino, R., Viegas, S., & Veríssimo, C. (2013). Fungal contamination in swine: a potential occupational health threat. Journal of Toxicology and Environmental Health, Part A, 76(4–5), 272–280.

    Article  CAS  Google Scholar 

  • Viegas, C., Malta-Vacas, J., Sabino, R., Viegas, S., & Veríssimo, C. (2014b). Accessing indoor fungal contamination using conventional and molecular methods in Portuguese poultries. Environmental Monitoring and Assessment, 186(3), 1951–1959.

    Article  CAS  Google Scholar 

  • Viegas, C. Q., Gomes, A., Abegão, J., Sabino, R., Graça, T., & Viegas, S. (2014c). Assessment of fungal contamination in waste sorting and incineration—case study in Portugal. Journal of Toxicology and Environmental Health, Part A: Current Issues, 77(1–3), 57–68.

    Article  CAS  Google Scholar 

  • Viegas, C., Faria, T., Quintal Gomes, A., Sabino, R., Seco, A., & Viegas, S. (2014d). Fungal contamination in two Portuguese wastewater treatment plants. Journal of Toxicology and Environmental Health Part A: Current Issues, 77(1–3), 90–102.

    Article  CAS  Google Scholar 

  • Villavert, L., Nadal, M., Figueras, I., & Domingo, M. (2009). Baseline levels of bioaerosols and VOC’s around a municipal waste incinerator prior to the construction of a mechanical—biological treatment plant. Waste Management, 29(9), 2454–2461.

    Article  Google Scholar 

  • Vilavert, L., Nadal, M., & Figueras, M. (2012). Volatile organic compounds and bioaerosols in the vicinity of a municipal waste organic fraction treatment plant. Human health risks. Environmental Science and Pollution Research, 19, 96–104.

    Article  CAS  Google Scholar 

  • Von Essen, S. G., & Donham, K. J. (1999). Illness and injury in animal confinement workers. Occupational Medicine: State of the Art Reviews, 14(2), 337–350.

    Google Scholar 

  • Wouters, I. M., Spaan, S., Douwes, J., Doekes, G., & Heederik, D. (2006). Overview of personal occupational exposure levels to inhalable dust, endotoxin, b(13)-glucan and fungal extracellular polysaccharides in the waste management chain. The Annals of Occupational Hygiene, 50(1), 39–53.

    Article  CAS  Google Scholar 

  • Zock, J. P., Heederik, D., & Kromhout, H. (1995). Exposure to dust, endotoxin and micro-organisms in the potato processing industry. Annals of Occupational Hygiene, 39(6), 841–854.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Occupational Health Services from the analyzed plant and also to the Environment and Health Research Group from Lisbon School of Health Technology. This study was supported by the Lisbon School of Health Technology. Raquel Sabino was financially supported by a fellowship from Fundacão para a Ciência e Tecnologia Portugal (contract SFRH/BPD/72775/2010).

Conflicts of interest

The authors state that there is no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Viegas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viegas, C., Faria, T., dos Santos, M. et al. Fungal burden in waste industry: an occupational risk to be solved. Environ Monit Assess 187, 199 (2015). https://doi.org/10.1007/s10661-015-4412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4412-y

Keywords

Navigation