Skip to main content
Log in

Larval shell morphology of Inoceramus pictus: all suspicions confirmed

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Inoceramids were eurytopic bivalves and have a wide application as biostratigraphic index fossils in the Upper Cretaceous. Their paleoecology, however, is far from being understood. Here the prodissoconch of Inoceramus pictus is described. It was found in an upper Cenomanian shallow water methane-seep deposit in the Tropic Shale, southern Utah, USA. The larval shell consists of a small prodissoconch-1 and a large prodissoconch-2. The shell morphology indicates a planktotrophic larval phase with wide dispersal potential, and which confirms previous hypotheses of inoceramid larval ecology. Comparison with other inoceramid prodissoconchs shows that larval shell morphology cannot generally explain dispersal, and that more factors must have played a role in the distribution of species.

Kurzfassung

Inoceramen waren eurytopische Bivalven und finden eine breite Anwendung als biostratigraphische Indexfossilien in der Oberkreide. Ihre Paläoökologie ist jedoch wenig verstanden. Hier wird der Prodissoconch von Inoceramus pictus beschrieben. Er wurde in einem Flachwasser-Methanseep im Obercenomanium des Tropic Shale, Süd-Utah, USA, gefunden. Er besteht aus einem kleinen Prodissoconch-1 und einem großen Prodissoconch-2. Die Schalenmorphologie deutet auf eine planktotrophe Larvalphase mit großem Verbreitungspotential hin und bestätigt frühere Hypothesen über die Ökologie von Inoceramenlarven. Vergleiche zu anderen Inoceramen-prodissoconchen zeigen, dass die Larvalschalenmorphologie die Ausbreitung nicht allein erklärt, und dass weitere Faktoren eine Rolle für die Verbreitung von Arten eine Rolle gespielt haben müssen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified after Ifrim et al. (2011)

Similar content being viewed by others

References

  • Arellano, S.M., A.L. Van Gaest, S.B. Johnson, R.C. Vrijenhoek, and C.M. Young. 2014. Larvae from deep-sea methane seeps disperse in surface waters. Proceedings of the Royal Society B Biological Sciences 281: 20133276. doi:10.1098/rspb.2013.3276.

    Google Scholar 

  • Buatois, L.A., and A.O.L. Angriman. 1992. The ichnology of a submarine braided channel complex: the Whisky Bay Formation, Cretaceous of James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 94 (1): 119–140.

    Article  Google Scholar 

  • Carter, J.G., P. Harries, N. Malchus, A. Sartori, L. Anderson, R. Bieler, A. Bogan, E. Coan, J. Cope, and S. Cragg 2012. Part N, revised, volume 1, chapter 31: Illustrated glossary of the Bivalvia. Treatise Online 48: 1–209.

    Google Scholar 

  • Cobban, W.A., S.C. Hook, and W.J. Kennedy. 1989. Upper Cretaceous rocks and ammonite faunas of southwestern New Mexico. Memoir of the New Mexico Bureau of Mines and Mineral Resources 45: 1–137.

    Google Scholar 

  • Cobban, W.A., S.C. Hook, and K.C. McKinney. 2008. Upper Cretaceous molluscan record along a transect from Virden, New Mexico, to Del Rio, Texas. New Mexico. Geology 30 (3): 75–92.

    Google Scholar 

  • Cragin, F.W. 1893. A contribution to the invertebrate paleontology of the Texas Cretaceous. Texas Geological Survey 4th annual Report 1892: 139–246.

    Google Scholar 

  • Crame, J.A., and A. Luther. 1997. The last inoceramids in Antarctica. Cretaceous Research 18: 179–195.

    Article  Google Scholar 

  • d’Orbigny, A. 1850. Prodrome de Paléontologie stratigraphique universelle des animaux mollusques et rayonnées, vol. 2. Paris: Masson.

    Book  Google Scholar 

  • Elder, W.P. 1989. Molluscan extinction patterns across the Cenomanian-Turonian stage boundaries in the western interior of the United States. Paleobiology 15 (3): 299–320.

    Article  Google Scholar 

  • Elder, W.P. 1991a. Mytiloides hattini n.sp.: a guide fossil for the base of the Turonian in the Western Interior of North America. Journal of Paleontology 65 (2): 234–241.

    Article  Google Scholar 

  • Elder, W.P. 1991. Molluscan paleoecology and sedimentation patterns of the Cenomanian–Turonian extinction interval in the southern Colorado Plateau region. In Stratigraphy, depositional environments, and sedimentary tectonics of the western margin, Cretaceous Western Interior Seaway, eds. J.D. Nations, and J.G. Eaton, 113–137. (Geological Society of America Special Paper 260).

  • Gale, A.S., W.J. Kennedy, S. Voigt, and I. Walaszczyk. 2005. Stratigraphy of the Upper Cenomanian-Lower Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research 26: 460–487.

    Article  Google Scholar 

  • Glover, E.A., and J.D. Taylor. 2007. Diversity of chemosymbiotic bivalves on coral reefs: Lucinidae (Mollusca, Bivalvia) of New Caledonia and Lifou. Zoosystematica 29: 109–181.

    Google Scholar 

  • Gros, O., L. Frenkiel, and M. Moueza. 1997. Embryonic larval, and post-larval development in the symbiontic clam Codakia orbicularis (Bivalvia: Lucinidae). Invertebrate Biology 116: 86–101.

    Article  Google Scholar 

  • Gustafson, R.G., and R.A. Lutz. 1992. Larval and early post-larval development of the protobranch bivalve Solemya velum (Mollusca: Bivalvia). Journal of the Marine Biological Association of the United Kingdom 72: 383–402.

    Article  Google Scholar 

  • Gustafson, R.G., and R.G.B. Reid. 1986. Development of the pericalymma larva of Solemya reidi (Bivalvia: Cryptodonta: Solemyidae) as revealed by light and electron microscopy. Marine Biology 93: 411–427.

    Article  Google Scholar 

  • Harries, P.J. 1993. Dynamics of survival following the Cenomanian-Turonian (Upper Cretaceous) mass extinction event. Cretaceous Research 14: 563–583.

    Article  Google Scholar 

  • Harries, P.J., E.G. Kauffman, J.S. Crampton, P. Bengtson, S. Cech, J.A. Crame, A.V. Dhondt, G. Ernst, H. Hilbrecht, G. Lopez, R. Mortimore, K.-A. Tröger, I. Walaszczyk, and C.J. Wood. 1996. Lower Turonian Euramerican Inoceramidae: A morphologic, taxonomic, and biostratigraphic overview. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 77: 641–671.

    Google Scholar 

  • Huber, B.T., R.D. Norris, and K.G. MacLeod. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30 (2): 123–126.

    Article  Google Scholar 

  • Ifrim, C., S. Götz, and W. Stinnesbeck. 2011. Fluctuations of the oxygen minimum zone at the end of oceanic anoxic event 2 reflected by benthic and planktic fossils. Geology 39 (11): 1043–1046.

    Article  Google Scholar 

  • Ifrim, C., and W. Stinnesbeck. 2008. Cenomanian-Turonian high-resolution biostratigraphy of north-eastern Mexico and its correlation with the GSSP and Europe. Cretaceous Research 29 (5–6): 943–956.

    Article  Google Scholar 

  • Ifrim, C., F. Wiese, and W. Stinnesbeck. 2014. Inoceramids and biozonation across the Turonian-Coniacian boundary (Upper Cretaceous) at El Rosario, Coahuila, northeastern Mexico. Newsletters on Stratigraphy 47 (2): 211–246. doi:10.1127/0078-0421/2014/0043.

    Article  Google Scholar 

  • Jarvis, I., G.A. Carson, M.K.E. Cooper, M.B. Hart, P.N. Leary, B.A. Tocher, D. Horne, and A. Rosenfeld. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Research 9: 3–103.

    Article  Google Scholar 

  • Jiménez-Berrocoso, A., K.G. MacLeod, and S.E. Calvert. 2008. Bottom water anoxia, inoceramid colonization, and benthopelagic coupling during black shale deposition on Demerara Rise (Late Cretaceous western tropical North Atlantic). Paleoceanography 23: PA3212. doi:10.1029/2007PA001545.

    Google Scholar 

  • Kauffman, E.G. 1975. Dispersal and biostratigraphic potential of Cretaceous benthonic bivalvia in the Western Interior. In The Cretaceous System in the Western Interior of North America, ed. W.G.E. Caldwell, 163–194. (Geological Association of Canada Special Paper 13).

  • Kauffman, E.G. 1976. South African middle Cretaceous Inoceramidae. Annales du Musée de l’Histoire naturelle Nice 4: 1–6.

    Google Scholar 

  • Kauffman, E.G., P.J. Harries, C. Meyer, T. Villamil, C. Arango, and G. Jaecks. 2007. Paleoecology of giant inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. Journal of Paleontology 81 (1): 64–81.

    Article  Google Scholar 

  • Kauffman, E.G., and B.G. Sageman. 1990. Biological sensing of benthic environments in dark shales and related oxygen-restricted facies. In Cretaceous resources, events and rhythms, eds. R.N. Ginsberg, and B. Beaudoin, 121–138. Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Kennedy, W.J., I. Walaszczyk, and W.A. Cobban. 2000. Pueblo, Colorado, USA, candidate global boundary stratotype section and point for the base of the Turonian stage of the Cretaceous, and for the base of the middle Turonian substage, with a revision of the Inoceramidae (Bivalvia). Acta Geologica Polonica 50: 295–334.

    Google Scholar 

  • Kennedy, W.J., I. Walaszczyk, and W.A. Cobban. 2005. The global boundary stratotype section and point for the base of the Turonian stage of the Cretaceous: Pueblo, Colorado, USA. Episodes 28 (2): 93–104.

    Google Scholar 

  • Kiel, S., F. Wiese, and A.L. Titus. 2012. Shallow-water methane-seep faunas in the Cenomanian Western Interior Seaway: No evidence for onshore-offshore adaptations to deep-sea vents. Geology 40: 839–842. doi:10.1130/G33300.1.

    Article  Google Scholar 

  • Knight, R.I., and N.J. Morris. 1996. Inoceramid larval planktotrophy evidence from the Gault Formation (middle and basal upper Albian), Folkstone, Kent. Palaeontology 39 (4): 1027–1036.

    Google Scholar 

  • Knight, R.I., N.J. Morris, J.A. Todd, L.E. Howard, and A.D. Ball. 2014. Exceptional preservation of a novel gill grade in large Cretaceous inoceramids: systematic and palaeobiological implications. Palaeontology 57 (1): 37–54.

    Article  Google Scholar 

  • Krueger, D.M., R.G. Gustafson, and C.M. Cavanough. 1996. Vertical transmisson of chemautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biological Bulletin 190: 195–202.

    Article  Google Scholar 

  • Malchus, N. 2004. Constraints in the ligament ontogeny and evolution of pteriomorphan Bivalvia. Palaeontology 47 (6): 1539–1574.

    Article  Google Scholar 

  • Malchus, N., and A. Sartori. 2013. Part N, revised, volume 1, chapter 4: the early shell: ontogeny, features and evolution. Treatise Online 61: 1–114.

    Google Scholar 

  • Mullineaux, L.S., S.W. Mills, A. Sweetman, A. Beaudreau, A. Metaxas, and H. Hunt. 2005. Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Marine Ecology Progress Series 293: 1–16.

    Article  Google Scholar 

  • Nagao, T., and T. Matumoto. 1940. A monograph of the cretaceous inoceramus of Japan. Journal of the Faculty of Science, Hokkaido Imperial University Ser. 4 Geology and mineralogy 6 (1): 1–64.

    Google Scholar 

  • Parkinson, J. (1821) V. Remarks on the Fossils collected by Mr. Phillips near Dover and Folkstone. Transactions of the Geological Society of London S1-5 (1): 52–59.

    Article  Google Scholar 

  • Sageman, B.B., and C.R. Bina. 1997. Diversity and species abundance patterns in late Cenomanian black shale biofacies, Western Interior, U.S. Palaios 12: 449–466.

    Article  Google Scholar 

  • Salerno, J.L., S.A. Macko, S.J. Hallam, M. Bright, Y. Won, Z. McKiness, and C.L. Van Dover. 2005. Characterization of symbiont populations in life-history stages of mussels from chemosymbiontic environments. Biological Bulletin 208: 145–155.

    Article  Google Scholar 

  • Scheltema, R.S. 1971. The dispersal of the larvae of shoal-water benthic intertebrate species over long distances by ocean currents. In Fourth European marine biological symposium, ed. D.J. Crisp, 7–28. Padua: Cambridge University Press.

    Google Scholar 

  • Scheltema, R.S., and I.P. Williams. 1983. Long-distance dispersal of planktonic larvae and the biogeography and evolution of some Polynesian and western Pacific mollusks. Bulletin of Marine Science 33: 545–565.

    Google Scholar 

  • Seeling, J., and P. Bengtson. 2002. Palaeobiogeography of the upper Cenomanian–lower Turonian macroinvertebrates of the Sergipe Basin, northeastern Brazil. Schriftenreihe der Erdwissenschaftlichen Kommissionen der Österreichischen Akademie der Wissenschaften 15: 151–168.

    Google Scholar 

  • Shumard, B.F. 1860. Observations upon the cretaceous strata of Texas. Transactions of the Academy of Sciences of St Louis 1: 582–590.

    Google Scholar 

  • Sowerby, J. de C. 1829. The mineral conchology of Great Britain, vol. 6, 504–609. London: B. Meredith.

    Google Scholar 

  • Takahashi, T. 2005. Responses of inoceramid bivalves to environmental disturbances across the Cenomanian–Turonian boundary in the Yezo forearc basin, Hokkaido, Japan. Cretaceous Research 26: 567–580.

    Article  Google Scholar 

  • Tanoue, K. 2003. Larval ecology of Cretaceous inoceramid bivalves from northwestern Hokkaido, Japan. Paleontological Research 7 (2): 105–110.

    Article  Google Scholar 

  • Titus, A.L., J.D. Powell, E.M. Roberts, S.D. Sampson, S.L. Pollock, J.I. Kirkland, and L.B. Albright 2005. Late Cretaceous stratigraphy, depositional environments, and macrovertebrate paleontology of the Kaiparowits Plateau, Grand Staircase-Escalante National Monument, Utah. In Interior Western United States, eds. J. Pederson, and C.M. Dehler, 101-128. (Geological Society of America Field Guide 6).  

    Chapter  Google Scholar 

  • Trask, J.L., and C.L. Van Dover. 1999. Site-specific and ontogenetic variations in nutrition of mussels (Bathymodiolus sp.) from the Lucky Strike hydrothermal vent field, mid-atlantic ridge. Limnology and Oceanography 44 (2): 334–343.

    Article  Google Scholar 

  • Tröger, K.-A., B. Niebuhr, and M. Wilmsen. 2009. Inoceramen aus dem Cenomanium bis Coniacium der danubischen Kreide-Gruppe (Bayern, Süd-Deutschland). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 65: 59–110.

    Google Scholar 

  • Voigt, S. 1995. Palaeobiogeography of early Late Cretaceous inoceramids in the context of a new global palaeogeography. Cretaceous Research 16 (2–3): 343–356.

    Article  Google Scholar 

  • Voigt, S. 1996. Paläobiogeographie oberkretazischer Inoceramen und Rudisten- Ozeanographische und klimatologische Konsequenzen einer neuen Paläogeographie. Münchner Geowissenschaftliche Abhandlungen (Reihe A) 31: 1–101.

    Google Scholar 

  • Vrijenhoek, R. 1997. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. Journal of Heredity 88 (4): 285–293.

    Article  Google Scholar 

  • Walaszczyk, I., and W.A. Cobban. 2000. Inoceramid faunas and biostratigraphy of the upper Turonian-Lower Coniacian of the Western Interior of the United States. Special Papers in Palaeontology 64: 1–118.

    Google Scholar 

  • Walaszczyk, I., A.G. Plint, and W.J. Kennedy. 2016. Biostratigraphy and inoceramus survival across the Cenomanian–Turonian (Cretaceous) boundary in the Ram River section, Alberta, Canada. Acta Geologica Polonica 66 (4): 715–728.

    Google Scholar 

  • Wiedmann, J. 1979. Itineraire géologique à travers le Crétacé moyendes chames Vascogotiques et Celtibériques (Espagne du Nord). Cuadernos de Geología Ibérica 5: 127–214.

    Google Scholar 

  • Won, Y., C. Young, R. Lutz, and R. Vrijenhoek. 2003. Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Molecular Ecology 12 (1): 169–184.

    Article  Google Scholar 

  • Woods, H., 1912. A monograph of the Cretaceous Lamellibranchia of England. Monograph of the Palaeontographical Society 2 (for 1911): 285-340.

  • Yokoyama, M., 1890. Die Versteinerungen aus der japanischen Kreide. Palaeontographica 36: 159–202.

    Google Scholar 

  • Young, C.M., R. He, R.B. Emlet, Y. Li, A.L. Van Gaest, K.C. Benning, M. Wolf, T.I. Smart, and M.E. Rice. 2012. Dispersal of deep-sea larvae from the intra-American Seas: simulations of trajectories using ocean models. Integrative and Comparative Biology 52: 483–496.

    Article  Google Scholar 

Download references

Acknowledgements

Sincerest thanks to Steffen Kiel (Stockholm, Sweden), who collected the specimen during fieldwork together with Alan Titus (Kanab, Utah) and Silke Nissen (Hamburg), to Alex Nützel (München) for the SEM images, and to Gerhard Hundertmark (Göttingen) for photography of macrofossils. I also thank Ireneusz Walaszczyk, Nikolaus Malchus, an anonymous reviewer and editor Mike Reich for their constructive comments and suggestions. Financial support by the Landesstiftung Baden-Württemberg (Brigitte-Schlieben-Lange-Programm) is gratefully acknow-ledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Ifrim.

Additional information

Handling editor: Mike Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ifrim, C. Larval shell morphology of Inoceramus pictus: all suspicions confirmed. PalZ 91, 327–336 (2017). https://doi.org/10.1007/s12542-017-0357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-017-0357-5

Keywords

Schlüsselwörter

Navigation