Skip to main content
Log in

Prediction of Micro-scale Forces in Dry Grinding Process Through a FEM—ML Hybrid Approach

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Grinding process modeling represents a great challenge due to its stochastic nature. The uncertainty factor of grinding technology is mainly attributable to the undefined grain morphology, with the influence of this aspect becoming more pronounced in a dry configuration. Even though grinding has always used lubricants, nowadays the reduction or complete elimination of this element could mean a significant reduction in environmental pollution. Many modeling approaches have been used in literature to investigate phenomena related to grinding but each exhibits some disadvantages. In this paper a hybrid FEM—ML approach is proposed to forecast forces generated by the action of a single grain in dry conditions, overcoming the main modeling limitations observed to date. Experiments and force measurements were performed on a CNC surface grinding machine using sintered aluminum oxide grains of size 60. FEM simulations were developed in DEFORM 3D to predict grinding forces and increase the data set. ML algorithms were proposed to increase model prediction productivity and optimize the control of process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yuan Zhang, F., Zheng Duan, C., Jie Wang, M., & Sun, W. (2018). White and dark layer formation mechanism in hard cutting of AISI52100 steel. Journal of Manufacturing Processing, 32, 878–887. https://doi.org/10.1016/j.jmapro.2018.04.011

    Article  Google Scholar 

  2. Brinksmeier, E., et al. (2006). Advances in modeling and simulation of grinding processes. CIRP Annals—Manufacturing Technology, 55(2), 667–696. https://doi.org/10.1016/j.cirp.2006.10.003

    Article  Google Scholar 

  3. Mishra, V. K., & Salonitis, K. (2013). Empirical estimation of grinding specific forces and energy based on a modified werner grinding model. Procedia CIRP, 8, 287–292. https://doi.org/10.1016/j.procir.2013.06.104

    Article  Google Scholar 

  4. Patnaik Durgumahanti, U. S., Singh, V., & Venkateswara Rao, P. (2010). A New Model for Grinding Force Prediction and Analysis. International Journal of Machine Tools and Manufacture, 50, 231–240. https://doi.org/10.1016/j.ijmachtools.2009.12.004

    Article  Google Scholar 

  5. Aslan, D., & Budak, E. (2014). Semi-analytical force model for grinding operations. Procedia CIRP, 14, 7–12. https://doi.org/10.1016/j.procir.2014.03.073

    Article  Google Scholar 

  6. Doman, D. A., Warkentin, A., & Bauer, R. (2009). Finite element modeling approaches in grinding. International Journal of Machine Tools and Manufacture, 49(2), 109–116. https://doi.org/10.1016/j.ijmachtools.2008.10.002

    Article  Google Scholar 

  7. Mamalis, A. G., Kundrák, J., Manolakos, D. E., Gyáni, K., & Markopoulos, A. (2003). Thermal modelling of surface grinding using implicit finite element techniques. International Journal of Advanced Manufacturing Technology, 21(12), 929–934. https://doi.org/10.1007/s00170-002-1410-3

    Article  Google Scholar 

  8. Chryssolouris, G., Tsirbas, K., Salonitis, K., & Systems, M. (2005). An analytical, numerical, and experimental. Brockhoff, 1999, 9.

    Google Scholar 

  9. Foeckerer, T., Zaeh, M. F., & Zhang, O. B. (2013). A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. International Journal of Heat and Mass Transfer, 56(1–2), 223–237. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.029

    Article  Google Scholar 

  10. Doman, D. A., Bauer, R., & Warkentin, A. (2009). Experimentally validated finite element model of the rubbing and ploughing phases in scratch tests. Proceedings of the Institution of Mechanical Engineers, Part B, 223(12), 1519–1527.

    Article  Google Scholar 

  11. Chena, X., & Öpözb, T. T. (2010). Simulation of grinding surface creation - A single grit approach. Advances in Materials Research, 126–128, 23–28.

    Article  Google Scholar 

  12. Lei Zhang, X., Yao, B., Feng, W., Huang Shen, Z., & Meng Wang, M. (2015). Modeling of a virtual grinding wheel based on random distribution of multi-grains and simulation of machine-process interaction. Journal of Zhejiang University Science A, 16(11), 874–884. https://doi.org/10.1631/jzus.A1400316

    Article  Google Scholar 

  13. Hecker, R. L., Liang, S. Y., & Jian, X. (2007). Grinding force and power modeling based on chip thickness analysis (pp 449–459). https://doi.org/10.1007/s00170-006-0473-y.

  14. Hecker, R. L., Ramoneda, I. M., & Liang, S. Y. (2003). Analysis of wheel topography and grit force for grinding process modeling. Transactions of the North American Manufacturing Research Institution SME, 31, 281–288.

    Google Scholar 

  15. Klocke, F., et al. (2016). Modelling of the grinding wheel structure depending on the volumetric composition. Procedia CIRP, 46, 276–280. https://doi.org/10.1016/j.procir.2016.04.066

    Article  Google Scholar 

  16. Klocke, F., Wrobel, C., Rasim, M., & Mattfeld, P. (2016). Approach of characterization of the grinding wheel topography as a contribution to the energy modelling of grinding processes. Procedia CIRP, 46, 631–635. https://doi.org/10.1016/j.procir.2016.04.011

    Article  Google Scholar 

  17. Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: A review. Journal of Manufacturing Processes, 57(June), 114–135. https://doi.org/10.1016/j.jmapro.2020.06.013

    Article  Google Scholar 

  18. Lv, L., Deng, Z., Liu, T., Li, Z., & Liu, W. (2002). Intelligent technology in grinding process driven by data: A review. The Journal of Artificial Intelligence Research, 16(January), 321–357. https://doi.org/10.1016/j.jmapro.2020.09.018

    Article  Google Scholar 

  19. Hashemitaheri, M., Mekarthy, S. M. R., & Cherukuri, H. (2020). Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by Support Vector and Gaussian Process Regression Methods. Procedia Manuf., 48, 1000–1008. https://doi.org/10.1016/j.promfg.2020.05.139

    Article  Google Scholar 

  20. Peng, B., Bergs, T., Schraknepper, D., Klocke, F., & Döbbeler, B. (2019). A hybrid approach using machine learning to predict the cutting forces under consideration of the tool wear. Procedia CIRP, 82, 302–307. https://doi.org/10.1016/j.procir.2019.04.031

    Article  Google Scholar 

  21. Markopoulos, A. P., & Kundrák, J. (2016). FEM/AI models for the simulation of precision grinding. Manufacturing Technology, 16(2), 384–390. https://doi.org/10.21062/ujep/x.2016/a/1213-2489/mt/16/2/384

    Article  Google Scholar 

  22. Finkeldey, F., Saadallah, A., Wiederkehr, P., & Morik, K. (2020). Real-time prediction of process forces in milling operations using synchronized data fusion of simulation and sensor data. Engineering Applications of Artificial Intelligence, 94, 103753. https://doi.org/10.1016/j.engappai.2020.103753

    Article  Google Scholar 

  23. Fortunato, A., & Ascari, A. (2013). The virtual design of machining centers for HSM: Towards new integrated tools. Mechatronics, 23(3), 264–278. https://doi.org/10.1016/j.mechatronics.2012.12.004

    Article  Google Scholar 

  24. Wang, C., Ding, F., Tang, D., Zheng, L., Li, S., & Xie, Y. (2016). Modeling and simulation of the high-speed milling of hardened steel SKD11 (62 HRC) based on SHPB technology. International Journal of Machine Tools and Manufacture, 108, 13–26. https://doi.org/10.1016/j.ijmachtools.2016.05.005

    Article  Google Scholar 

  25. Pandiyan, V., Caesarendra, W., Glowacz, A., & Tjahjowidodo, T. (2020). Modelling of material removal in abrasive belt grinding process: A regression approach. Symmetry (Basel), 12(1), 1. https://doi.org/10.3390/SYM12010099

    Article  Google Scholar 

  26. Bin Wang, S., & Wu, C. F. (2006). Selections of working conditions for creep feed grinding: Part(III): Avoidance of the workpiece burning by using improved BP neural network. International Journal of Advanced Manufacturing Technology, 28(1–2), 31–37. https://doi.org/10.1007/s00170-004-2343-9

    Article  Google Scholar 

  27. Nitesh, W. P. K., Chawla, V., Bowyer, K. W., & Hall, L. O. (2020). SMOTE: Synthetic Minority Over-sampling Technique. The Journal of Artificial Intelligence Research, 16, 321–357.

    MATH  Google Scholar 

  28. Skogstad Larsen, B. (2021). Synthetic Minority Over-sampling Technique (SMOTE). (https://github.com/dkbsl/matlab_smote/releases/tag/1.0), GitHub. Retrieved September 7, 2021.

  29. Kayri, M. (2016). Predictive abilities of Bayesian regularization and levenberg-marquardt algorithms in artificial neural networks: A comparative empirical study on social data. Mathematical Computer Applications, 21(2), 1. https://doi.org/10.3390/mca21020020

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Lerra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerra, F., Candido, A., Liverani, E. et al. Prediction of Micro-scale Forces in Dry Grinding Process Through a FEM—ML Hybrid Approach. Int. J. Precis. Eng. Manuf. 23, 15–29 (2022). https://doi.org/10.1007/s12541-021-00601-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00601-2

Keywords

Navigation