Skip to main content
Log in

Comparisons of Age-Related Changes in Impact Characteristics Between Healthy Older and Younger Runners

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate whether there are any age-related differences in impact characteristics during running between healthy older and younger men. Ten healthy older (age: 58.7 ± 2.5 years) male and ten healthy younger (age: 22.3 ± 1.6 years) male recreational runners ran on a treadmill at three different running speeds (i.e. 2.2 m/s, 2.8 m/s, and 3.2 m/s). Tri-axial accelerometers (Noraxon, USA) were firmly attached to the tibia and the sternum. Gait parameters, three-dimensional peak tibial accelerations, peak sternum accelerations and shock attenuation were calculated during the stance phase of running. The ANOVA repeated measures was applied at an alpha level of .05. Older runners showed greater impact on the sternum, leading to reduced shock attenuation compared with younger runners (p < .05). In addition, older runners showed a shorter lag between peak resultant accelerations experienced by the upper body and peak acceleration experienced by the lower leg compared with younger runners (p < .05). This study suggests that the intensity (i.e. speed and duration) and types of exercise should be carefully considered for older adults because of lower shock attenuation of the body and changes in coordination strategy between the segments in high-impact activities like running.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kusy, K., & Zielinski, J. (2014). Aerobic capacity in speed-power athletes aged 20–90 years vs endurance runners and untrained participants. Scandinavian Journal of Medicine & Science in Sports, 24, 68–79. https://doi.org/10.1111/j.1600-0838.2012.01496.x

    Article  Google Scholar 

  2. Martyn-St James, M., & Carroll, S. (2009). A meta-analysis of impact exercise on postmenopausal bone loss: The case for mixed loading exercise programmes. British Journal of Sports Medicine, 43, 898–908. https://doi.org/10.1136/bjsm.2008.052704

    Article  Google Scholar 

  3. Power, G. A., Dalton, B. H., Behm, D. G., Doherty, T. J., Vandervoort, A. A., & Rice, C. L. (2012). Motor unit survival in lifelong runners is muscle dependent. Medicine & Science in Sports & Exercise, 44, 1235–1242. https://doi.org/10.1249/MSS.0b013e318249953c

    Article  Google Scholar 

  4. Devita, P., Fellin, R. E., Seay, J. F., Ip, E., Stavro, N., & Messier, S. P. (2016). The Relationships between age and running biomechanics. Medicine & Science in Sports & Exercise, 48, 98–106. https://doi.org/10.1249/MSS.0000000000000744

    Article  Google Scholar 

  5. McGibbon, C. A. (2003). Toward a better understanding of gait changes with age and disablement: Neuromuscular adaptation. Exercise and Sport Sciences Reviews, 31, 102–108. https://doi.org/10.1097/00003677-200304000-00009

    Article  Google Scholar 

  6. Vandervoort, A. A., Chesworth, B. M., Cunningham, D. A., Paterson, D. H., Rechnitzer, P. A., & Koval, J. J. (1992). Age and sex effects on mobility of the human ankle. The Journals of Gerontology, 47, M17-21. https://doi.org/10.1093/geronj/47.1.m17

    Article  Google Scholar 

  7. Bus, S. A. (2003). Ground reaction forces and kinematics in distance running in older-aged men. Medicine & Science in Sports & Exercise, 35, 1167–1175. https://doi.org/10.1249/01.MSS.0000074441.55707.D1

    Article  Google Scholar 

  8. Fukuchi, R. K., & Duarte, M. (2008). Comparison of three-dimensional lower extremity running kinematics of young adult and elderly runners. Journal of Sports Sciences, 26, 1447–1454. https://doi.org/10.1080/02640410802209018

    Article  Google Scholar 

  9. Korhonen, M. T., Mero, A. A., Alen, M., Sipila, S., Hakkinen, K., Liikavainio, T., Viitasalo, J. T., Haverinen, M. T., & Suominen, H. (2009). Biomechanical and skeletal muscle determinants of maximum running speed with aging. Medicine & Science in Sports & Exercise, 41, 844–856. https://doi.org/10.1249/MSS.0b013e3181998366

    Article  Google Scholar 

  10. Matheson, G. O., Macintyre, J. G., Taunton, J. E., Clement, D. B., & Lloyd-Smith, R. (1989). Musculoskeletal injuries associated with physical activity in older adults. Medicine & Science in Sports & Exercise, 21, 379–385.

    Article  Google Scholar 

  11. Pollock, M. L., Carroll, J. F., Graves, J. E., Leggett, S. H., Braith, R. W., Limacher, M., & Hagberg, J. M. (1991). Injuries and adherence to walk/jog and resistance training programs in the elderly. Medicine & Science in Sports & Exercise, 23, 1194–1200.

    Article  Google Scholar 

  12. Fukuchi, R. K., Stefanyshyn, D. J., Stirling, L., Duarte, M., & Ferber, R. (2014). Flexibility, muscle strength and running biomechanical adaptations in older runners. Clinical Biomechanics (Bristol, Avon), 29, 304–310. https://doi.org/10.1016/j.clinbiomech.2013.12.007

    Article  Google Scholar 

  13. DeVita, P., & Hortobagyi, T. (2000). Age causes a redistribution of joint torques and powers during gait. Journal of Applied Physiology, 88, 1804–1811. https://doi.org/10.1152/jappl.2000.88.5.1804

    Article  Google Scholar 

  14. Giarmatzis, G., Jonkers, I., Baggen, R., & Verschueren, S. (2017). Less hip joint loading only during running rather than walking in elderly compared to young adults. Gait & Posture, 53, 155–161. https://doi.org/10.1016/j.gaitpost.2017.01.020

    Article  Google Scholar 

  15. Jin, L., & Hahn, M. E. (2019). Comparison of lower extremity joint mechanics between healthy active young and middle age people in walking and running gait. Scientific Reports, 9, 5568. https://doi.org/10.1038/s41598-019-41750-9

    Article  Google Scholar 

  16. Kline, P. W., & Williams, D. S., 3rd. (2015). Effects of normal aging on lower extremity loading and coordination during running in males and females. International Journal of Sports Physical Therapy, 10, 901–909.

    Google Scholar 

  17. Cheung, R. T. H., Zhang, J. H., Chan, Z. Y. S., An, W. W., Au, I. P. H., MacPhail, A., & Davis, I. S. (2019). Shoe-mounted accelerometers should be used with caution in gait retraining. Scandinavian Journal of Medicine & Science in Sports, 29, 835–842. https://doi.org/10.1111/sms.13396

    Article  Google Scholar 

  18. Hennig, E. M., & Lafortune, M. A. (1991). Relationships between ground reaction force and tibial bone acceleration parameters. Journal of Applied Biomechanics, 7, 303–309.

    Google Scholar 

  19. Ryu, S., Lee, Y. S., & Park, S. K. (2021). Impact signal differences dependent on the position of accelerometer attachment and the correlation with the ground reaction force during running. International Journal of Precision Engineering and Manufacturing, 22, 1791–1798. https://doi.org/10.1007/s12541-021-00483-4

    Article  Google Scholar 

  20. Sheerin, K. R., Reid, D., & Besier, T. F. (2019). The measurement of tibial acceleration in runners-A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use. Gait & Posture, 67, 12–24. https://doi.org/10.1016/j.gaitpost.2018.09.017

    Article  Google Scholar 

  21. Kavanagh, J. J., Barrett, R. S., & Morrison, S. (2004). Upper body accelerations during walking in healthy young and elderly men. Gait & Posture, 20, 291–298. https://doi.org/10.1016/j.gaitpost.2003.10.004

    Article  Google Scholar 

  22. Van Emmerik, R. E., McDermott, W. J., Haddad, J. M., & Van Wegen, E. E. (2005). Age-related changes in upper body adaptation to walking speed in human locomotion. Gait & Posture, 22, 233–239. https://doi.org/10.1016/j.gaitpost.2004.09.006

    Article  Google Scholar 

  23. Mazza, C., Iosa, M., Pecoraro, F., & Cappozzo, A. (2008). Control of the upper body accelerations in young and elderly women during level walking. Journal of NeuroEngineering and Rehabilitation, 5, 30. https://doi.org/10.1186/1743-0003-5-30

    Article  Google Scholar 

  24. Napier, C., Fridman, L., Blazey, P., Tran, N., Michie, T. V., & Schneeberg, A. (2022). Differences in peak impact accelerations among foot strike patterns in recreational runners. Front Sports Act Living, 4, 802019. https://doi.org/10.3389/fspor.2022.802019

    Article  Google Scholar 

  25. Reenalda, J., Maartens, E., Buurke, J. H., & Gruber, A. H. (2019). Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units. Gait & Posture, 68, 155–160. https://doi.org/10.1016/j.gaitpost.2018.11.020

    Article  Google Scholar 

  26. Hunter, J. G., Smith, A. M. B., Sciarratta, L. M., Suydam, S., Shim, J. K., & Miller, R. H. (2020). Standardized lab shoes do not decrease loading rate variability in recreational runners. Journal of Applied Biomechanics. https://doi.org/10.1123/jab.2019-0337

    Article  Google Scholar 

  27. Lafortune, M. A. (1991). Three-dimensional acceleration of the tibia during walking and running. Journal of Biomechanics, 24, 877–886. https://doi.org/10.1016/0021-9290(91)90166-k

    Article  Google Scholar 

  28. Wei, Q., Wang, Z., Woo, J., Liebenberg, J., Park, S. K., Ryu, J., & Lam, W. K. (2018). Kinetics and perception of basketball landing in various heights and footwear cushioning. PLoS ONE, 13, e0201758. https://doi.org/10.1371/journal.pone.0201758

    Article  Google Scholar 

  29. Fazio, P., Granieri, G., Casetta, I., Cesnik, E., Mazzacane, S., Caliandro, P., Pedrielli, F., & Granieri, E. (2013). Gait measures with a triaxial accelerometer among patients with neurological impairment. Neurological Sciences, 34, 435–440. https://doi.org/10.1007/s10072-012-1017-x

    Article  Google Scholar 

  30. Park, S. K., Jeon, H. M., Lam, W. K., Stefanyshyn, D., & Ryu, J. (2019). The effects of downhill slope on kinematics and kinetics of the lower extremity joints during running. Gait & Posture, 68, 181–186. https://doi.org/10.1016/j.gaitpost.2018.11.007

    Article  Google Scholar 

  31. Giandolini, M., Poupard, T., Gimenez, P., Horvais, N., Millet, G. Y., Morin, J. B., & Samozino, P. (2014). A simple field method to identify foot strike pattern during running. Journal of Biomechanics, 47, 1588–1593. https://doi.org/10.1016/j.jbiomech.2014.03.002

    Article  Google Scholar 

  32. Purcell, B., Peter Channells, J., James, D., & Barrett, R. (2006). Use of accelerometers for detecting foot-ground contact time during running. In Proceedings of proceedings of SPIE—The international society for optical engineering.

  33. Dufek, J. S., Mercer, J. A., Teramoto, K., Mangus, B. C., & Freedman, J. A. (2008). Impact attenuation and variability during running in females: A lifespan investigation. Journal of Sport Rehabilitation, 17, 230–242.

    Article  Google Scholar 

  34. Sinclair, J. (2016). Sex differences in shock attenuation during running. Central European Journal of Sport Sciences and Medicine, 15, 37–42.

    Article  Google Scholar 

  35. Chambon, N., Sevrez, V., Ly, Q. H., Gueguen, N., Berton, E., & Rao, G. (2014). Aging of running shoes and its effect on mechanical and biomechanical variables: Implications for runners. Journal of Sports Sciences, 32, 1013–1022. https://doi.org/10.1080/02640414.2014.886127

    Article  Google Scholar 

  36. Creaby, M. W., & Franettovich Smith, M. M. (2016). Retraining running gait to reduce tibial loads with clinician or accelerometry guided feedback. Journal of Science and Medicine in Sport, 19, 288–292. https://doi.org/10.1016/j.jsams.2015.05.003

    Article  Google Scholar 

  37. Sheerin, K. R., Besier, T. F., Reid, D., & Hume, P. A. (2018). The one-week and six-month reliability and variability of three-dimensional tibial acceleration in runners. Sports Biomechanics, 17, 531–540. https://doi.org/10.1080/14763141.2017.1371214

    Article  Google Scholar 

  38. Wood, C. M., & Kipp, K. (2014). Use of audio biofeedback to reduce tibial impact accelerations during running. Journal of Biomechanics, 47, 1739–1741. https://doi.org/10.1016/j.jbiomech.2014.03.008

    Article  Google Scholar 

  39. Greenhalgh, A., Sinclair, J., Protheroe, L., & Chockalingam, N. (2012). Predicting impact shock magnitude: which ground reaction force variable should we use? International Journal of Sports Science and Engineering, 6, 225–231.

    Google Scholar 

  40. Larsson, L., Grimby, G., & Karlsson, J. (1979). Muscle strength and speed of movement in relation to age and muscle morphology. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 46, 451–456. https://doi.org/10.1152/jappl.1979.46.3.451

    Article  Google Scholar 

  41. Riggs, B. L., & Melton, L. J., 3rd. (1986). Involutional osteoporosis. The New England Journal of Medicine, 314, 1676–1686. https://doi.org/10.1056/NEJM198606263142605

    Article  Google Scholar 

  42. Vandervoort, A. A., & McComas, A. J. (1986). Contractile changes in opposing muscles of the human ankle joint with aging. Journal of Applied Physiology, 61, 361–367. https://doi.org/10.1152/jappl.1986.61.1.361

    Article  Google Scholar 

  43. Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait & Posture, 18, 35–46. https://doi.org/10.1016/s0966-6362(02)00159-5

    Article  Google Scholar 

  44. Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3, 193–214.

    Article  Google Scholar 

  45. Saunders, J. B., Inman, V. T., & Eberhart, H. D. (1953). The major determinants in normal and pathological gait. The Journal of Bone and Joint Surgery, 35-A, 543–558.

    Article  Google Scholar 

  46. Derrick, T. R., Hamill, J., & Caldwell, G. E. (1998). Energy absorption of impacts during running at various stride lengths. Medicine & Science in Sports & Exercise, 30, 128–135. https://doi.org/10.1097/00005768-199801000-00018

    Article  Google Scholar 

  47. Edwards, W. B., Derrick, T. R., & Hamill, J. (2012). Musculoskeletal attenuation of impact shock in response to knee angle manipulation. Journal of Applied Biomechanics, 28, 502–510. https://doi.org/10.1123/jab.28.5.502

    Article  Google Scholar 

  48. McMahon, T. A., Valiant, G., & Frederick, E. C. (1987). Groucho running. Journal of Applied Physiology, 62, 2326–2337. https://doi.org/10.1152/jappl.1987.62.6.2326

    Article  Google Scholar 

  49. Judge, J. O., Davis, R. B., 3rd., & Ounpuu, S. (1996). Step length reductions in advanced age: The role of ankle and hip kinetics. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 51, M303-312. https://doi.org/10.1093/gerona/51a.6.m303

    Article  Google Scholar 

  50. Silder, A., Heiderscheit, B., & Thelen, D. G. (2008). Active and passive contributions to joint kinetics during walking in older adults. Journal of Biomechanics, 41, 1520–1527. https://doi.org/10.1016/j.jbiomech.2008.02.016

    Article  Google Scholar 

  51. Kim, W., Voloshin, A. S., Johnson, S. H., & Simkin, A. (1993). Measurement of the impulsive bone motion by skin-mounted accelerometers. Journal of Biomechanical Engineering, 115, 47–52. https://doi.org/10.1115/1.2895470

    Article  Google Scholar 

  52. Malm, M., Samman, M., & Serup, J. (1995). In vivo skin elasticity of 22 anatomical sites: The vertical gradient of skin extensibility and implications in gravitational aging. Skin Research and Technology, 1, 61–67. https://doi.org/10.1111/j.1600-0846.1995.tb00019.x

    Article  Google Scholar 

  53. Forner-Cordero, A., Mateu-Arce, M., Forner-Cordero, I., Alcantara, E., Moreno, J. C., & Pons, J. L. (2008). Study of the motion artefacts of skin-mounted inertial sensors under different attachment conditions. Physiological Measurement, 29, N21-31. https://doi.org/10.1088/0967-3334/29/4/N01

    Article  Google Scholar 

  54. Saha, S., & Lakes, R. S. (1977). The effect of soft tissue on wave-propagation and vibration tests for determining the in vivo properties of bone. Journal of Biomechanics, 10, 393–401. https://doi.org/10.1016/0021-9290(77)90015-x

    Article  Google Scholar 

  55. Lafortune, M. A., & Hennig, E. M. (1991). Contribution of angular motion and gravity to tibial acceleration. Medicine & Science in Sports & Exercise, 23, 360–363.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by Korea government (MSIT) (Grant number: 2019RIF1A1061371) and Fila Holdings (Seoul, Korea). We thank Junghyun Woo, Msc, for data collection and analysis and Donna Mae Humber for her professional editing for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Kyoon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SK., Stefanyshyn, D., Ryu, S. et al. Comparisons of Age-Related Changes in Impact Characteristics Between Healthy Older and Younger Runners. Int. J. Precis. Eng. Manuf. 23, 1465–1476 (2022). https://doi.org/10.1007/s12541-022-00720-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00720-4

Keywords

Navigation