Skip to main content
Log in

Impact Signal Differences Dependent on the Position of Accelerometer Attachment and the Correlation with the Ground Reaction Force during Running

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Attachment of an accelerometer on the tibia is widely applied in the studies of impact during running as peak acceleration (PA) is highly relevant to peak ground reaction force (PGRF) and loading rate (LR). However, there are no guide lines for the positioning of the accelerometer on the tibia. The purpose of this study was twofold: first, to compare the differences in acceleration during running depending on the positions of the accelerometer’s attachment to the tibia (i.e. the distal tibia vs. proximal tibia); second, to select the better accelerometer position between the two placements in order to measure impact from the ground based on the correlations with the major impact variables of ground reaction force collected by a force plate. The twenty participants ran on an instrumented treadmill. Two three-axis accelerometers were attached to the distal tibia and proximal tibia, respectively. PAs at the distal tibia were greater than those at the proximal tibia (p < 05). PAs at the distal tibia had a greater effect on predicting PGRF and LR compared to those at the proximal tibia (p < 05). Therefore, considering the purpose of this study, the position of the accelerometer should be carefully selected. These findings suggest that an accelerometer attached at the distal tibia would provide a better estimation of the measurement of impact during running.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hreljac, A. (2004). Impact and overuse injuries in run-ners. Medicine & Science in Sports & Exercise, 36(5), 845–849. https://doi.org/10.1249/01.mss.0000126803.66636.dd.

    Article  Google Scholar 

  2. Meardon, S. A., & Derrick, T. R. (2014). Effect of step width manipulation on tibial stress during running. Journal of Biomechanics, 47, 2738–2744. https://doi.org/10.1016/j.jbiomech.2014.04.047.

    Article  Google Scholar 

  3. Novacheck, T. F. (1998). The biomechanics of running. Gait & Posture, 7(1), 77–95. https://doi.org/10.1016/S0966-6362(97)00038-6.

    Article  Google Scholar 

  4. Sinclair, J., Greenhalgh, A., Edmundson, C. J., Brooks, D., & Hobbs, S. J. (2012). Gender differences in the kinetics and kinematics of distance running: Implications for footwear design. International Journal of Sports Science and Engineering, 6(2), 118–128.

    Google Scholar 

  5. Bus, S. A. (2003). Ground reaction forces and kinematics in distance running in older-aged men. Medicine & Science in Sports & Exercise, 35(7), 1167–1175. https://doi.org/10.1249/01.MSS.0000074441.55707.D1.

    Article  Google Scholar 

  6. Cavanagh, P. R., & Lafortune, M. A. (1980). Ground reaction forces in distance running. Journal of Biomechanics, 13(5), 397–406. https://doi.org/10.1016/0021-9290(80)90033-0.

    Article  Google Scholar 

  7. Kyröläinen, H., Komi, P. V., & Belli, A. (1999). Changes in muscle activity patterns and kinetics with increasing running speed. The Journal of Strength & Conditioning Research, 13(4), 400–406.

    Google Scholar 

  8. Nigg, B. M., Bahlsen, H. A., Luethi, S. M., & Stokes, S. (1987). The influence of running velocity and midsole hardness on external impact forces in heel-toe running. Journal of Biomechanics, 20(10), 951–959. https://doi.org/10.1016/0021-9290(87)90324-1.

    Article  Google Scholar 

  9. Nilsson, J., & Thorstensson, A. (1989). Ground reaction forces at different speeds of human walking and running. Acta Physiologica Scandinavica, 136(2), 217–227. https://doi.org/10.1111/j.1748-1716.1989.tb08655.x.

    Article  Google Scholar 

  10. Baltich, J., Maurer, C., & Nigg, B. M. (2015). Increased vertical impact forces and altered running mechanics with softer midsole shoes. PloS One. https://doi.org/10.1371/journal.pone.0125196.

    Article  Google Scholar 

  11. Cheung, R. T., Zhang, J. H., Chan, Z. Y., An, W. W., Au, I. P., MacPhail, A., & Davis, I. S. (2019). Shoe-mounted accele-rometers should be used with caution in gait retrain-ing. Scandinavian Journal of Medicine & Science in Sports, 29(6), 835–842. https://doi.org/10.1111/sms.13396.

    Article  Google Scholar 

  12. Crowell, H. P., & Davis, I. S. (2011). Gait retraining to reduce lower extremity loading in runners. Clinical Biomechanics, 26(1), 78–83. https://doi.org/10.1016/j.clinbiomech.2010.09.003.

    Article  Google Scholar 

  13. Phan, X., Grisbrook, T. L., Wernli, K., Stearne, S. M., Davey, P., & Ng, L. (2017). Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique. Journal of Sports Sciences, 35(16), 1636–1642. https://doi.org/10.1080/02640414.2016.1227466.

    Article  Google Scholar 

  14. Agresta, C., & Brown, A. (2015). Gait retraining for injured and healthy runners using augmented feedback: A systematic literature review. Journal of Orthopaedic & Sports Physical the-Rapy, 45(8), 576–584. https://doi.org/10.2519/jospt.2015.5823.

    Article  Google Scholar 

  15. Eriksson, M., Halvorsen, K. A., & Gullstrand, L. (2011). Immediate effect of visual and auditory feedback to control the running mechanics of well-trained athletes. Journal of Sports Sciences, 29(3), 253–262. https://doi.org/10.1080/02640414.2010.523088.

    Article  Google Scholar 

  16. Ryu, S., Kim, J., Kim, W. S., & Park, S. K. (2002). Immediate effects of Real-time visual biofeedback using ground reaction forces on gait symmetry in elderly males. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00234-6.

    Article  Google Scholar 

  17. Higginson, B. K. (2009). Methods of running gait analy- sis. Current Sports Medicine Reports, 8(3), 136–141. https://doi.org/10.1249/JSR.0b013e3181a6187a.

    Article  Google Scholar 

  18. Brayne, L., Barnes, A., Heller, B., & Wheat, J. (2018). Using a wireless consumer accelerometer to measure tibial acceleration during running: Agreement with a skin-mounted sensor. Sports Engineering, 21(4), 487–491. https://doi.org/10.1007/s12283-018-0271-4.

    Article  Google Scholar 

  19. Giandolini, M., Pavailler, S., Samozino, P., Morin, J. B., & Horvais, N. (2015). Foot strike pattern and impact continuous measurements during a trail running race: Proof of concept in a world-class athlete. Footwear Science, 7(2), 127–137. https://doi.org/10.1080/19424280.2015.1026944.

    Article  Google Scholar 

  20. Hollis, C. R., Koldenhoven, R. M., Resch, J. E., & Hertel, J. (2019). Running biomechanics as measured by wearable sensors: effects of speed and surface. Sports Biomechanics. https://doi.org/10.1080/14763141.2019.1579366.

    Article  Google Scholar 

  21. Hennig, E. M., & Lafortune, M. A. (1991). Relationships between ground reaction force and tibial bone acceleration parameters. Journal of Applied Biomechanics, 7(3), 303–309. https://doi.org/10.1123/ijsb.7.3.303.

    Article  Google Scholar 

  22. Milner, C. E., Ferber, R., Pollard, C. D., Hamill, J., & Davis, I. S. (2006). Biomechanical factors associated with tibial stress fracture in female runners. Medicine & Science in Sports & Exercise, 38(2), 323–328. https://doi.org/10.1249/01.mss.0000183477.75808.92.

    Article  Google Scholar 

  23. Laughton, C. A., Davis, I. M., & Hamill, J. (2003). Effect of strike pattern and orthotic intervention on tibial shock during running. Journal of Applied Biomechanics, 19(2), 153–168. https://doi.org/10.1123/jab.19.2.153.

    Article  Google Scholar 

  24. Futrell, E. E., Jamison, S. T., Tenforde, A. S., & Davis, I. S. (2018). Relationships between habitual cadence, footstrike, and vertical load rates in runners. Medicine & Science in Sports & Exercise, 50(9), 1837–1841. https://doi.org/10.1249/MSS.0000000000001629.

    Article  Google Scholar 

  25. García-Pérez, J. A., Pérez-Soriano, P., Llana Belloch, S., Lucas-Cuevas, Á. G., & Sánchez-Zuriaga, D. (2014). Effects of tread- mill running and fatigue on impact acceleration in distance running. Sports Biomechanics, 13(3), 259–266. https://doi.org/10.1080/14763141.2014.909527

    Article  Google Scholar 

  26. Glauberman, M. D., & Cavanagh, P. R. (2014). Rearfoot strikers have smaller resultant tibial accelerations at foot contact than non-rearfoot strikers. Journal of Foot and Ankle Research, 7(S1), A93. https://doi.org/10.1186/1757-1146-7-S1-A93.

    Article  Google Scholar 

  27. Mercer, J. A., Vance, J., Hreljac, A., & Hamill, J. (2002). Relationship between shock attenuation and stride length during running at different velocities. European Journal of Applied Physiology, 87(4–5), 403–408. https://doi.org/10.1007/s00421-002-0646-9.

    Article  Google Scholar 

  28. Rios, J., de Andrade, M., & Avila, A. (2010). Analysis of peak tibial acceleration during gait in different cadences. Human Movement, 11(2), 132–136. https://doi.org/10.2478/v10038-010-0018-y.

    Article  Google Scholar 

  29. Lucas-Cuevas, A. G., Camacho-Garcia, A., Llinares, R., Quesada, J. I. P., Llana-Belloch, S., & Perez-Soriano, P. (2017). Influence of custom-made and prefabricated insoles before and after an intense run. PloS One. https://doi.org/10.1371/journal.pone.0173179.

    Article  Google Scholar 

  30. Christiansen, C. L., Bade, M. J., Paxton, R. J., & Stevens-Lapsley, J. E. (2015). Measuring movement symmetry using tibial-mounted accelerometers for people recovering from total knee arthroplasty. Clinical Biomechanics, 30(7), 732–737. https://doi.org/10.1016/j.clinbiomech.2015.04.013.

    Article  Google Scholar 

  31. Montgomery, G., Abt, G., Dobson, C., Smith, T., & Ditroilo, M. (2016). Tibial impacts and muscle activation during walking, jogging and running when performed overground, and on motorised and non-motorised treadmills. Gait & Posture, 49, 120–126. https://doi.org/10.1016/j.gaitpost.2016.06.037.

    Article  Google Scholar 

  32. Lafortune, M. A. (1991). Three-dimensional acceleration of the tibia during walking and running. Journal of Biomecha-nics, 24(10), 877–886. https://doi.org/10.1016/0021-9290(91)90166-K.

    Article  Google Scholar 

  33. Lucas-Cuevas, A. G., Encarnación-Martínez, A., Camacho-García, A., Llana-Belloch, S., & Pérez-Soriano, P. (2017). The location of the tibial accelerometer does influence impact acceleration parameters during running. Journal of Sports Sciences, 35(17), 1734–1738. https://doi.org/10.1080/02640414.2016.1235792.

    Article  Google Scholar 

  34. Wei, Q., Wang, Z., Woo, J., Liebenberg, J., Park, S. K., Ryu, J., & Lam, W. K. (2018). Kinetics and perception of basketball landing in various heights and footwear cushioning. PLoS One, 13(8), e0201758. https://doi.org/10.1371/journal.pone.0201758.

    Article  Google Scholar 

  35. Harrison, A. D., Ford, K. R., Myer, G. D., & Hewett, T. E. (2011). Sex differences in force attenuation: A clinical assessment of single leg hop performance on a portable force plate. British Journal of Sports Medicine, 45(3), 198–202. https://doi.org/10.1136/bjsm.2009.061788.

    Article  Google Scholar 

  36. Dattalo P. (2013). Analysis of Multiple Dependent Variables. Published to Oxford Scholarship Online.

  37. Mercer, J. A., & Horsch, S. (2015). Heel–toe running: A new look at the influence of foot strike pattern on impact force. Journal of Exercise Science & Fitness, 13(1), 29–34. https://doi.org/10.1071/MF9590007.

    Article  Google Scholar 

  38. Orendurff, M. S., Kobayashi, T., Tulchin-Francis, K., Tullock, A. M. H., Villarosa, C., Chan, C., & Strike, S. (2018). A little bit faster: Lower extremity joint kinematics and kinetics as recreational runners achieve faster speeds. Journal of Biomechanics, 71, 167–175. https://doi.org/10.1016/j.jbiomech.2018.02.010.

    Article  Google Scholar 

  39. Zifchock, R. A., Davis, I., Higginson, J., McCaw, S., & Royer, T. (2008). Sideto-side differences in overuse running injury susceptibility: A retrospective study. Human Movement Science, 27(6), 888–902. https://doi.org/10.1016/j.humov.2008.03.007.

    Article  Google Scholar 

  40. Chan, Z. Y., Zhang, J. H., Au, I. P., An, W. W., Shum, G. L., Ng, G. Y., & Cheung, R. T. (2018). Gait retraining for the reduction of injury occurrence in novice distance runners: 1-year follow-up of a randomized controlled trial. The American Journal of Sports Medicine, 46(2), 388–395. https://doi.org/10.1177/0363546517736277.

    Article  Google Scholar 

  41. Davis, I. S., Bowser, B. J., & Mullineaux, D. R. (2016). Greater vertical impact loading in female runners with medically diagnosed injuries: a prospective investigation. British Journal of Sports Medicine, 50(14), 887–892. https://doi.org/10.1136/bjsports-2015-094579.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant number: 2019R1F1A1061371) and FILA Lab. (FILA Holdings, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Kyoon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, S., Lee, YS. & Park, SK. Impact Signal Differences Dependent on the Position of Accelerometer Attachment and the Correlation with the Ground Reaction Force during Running. Int. J. Precis. Eng. Manuf. 22, 1791–1798 (2021). https://doi.org/10.1007/s12541-021-00483-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00483-4

Keywords

Navigation