Skip to main content
Log in

Multi-Modal Stress Characteristics Under Coupling Effect of Strip and Work Roll

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the rolling interface instability characteristics caused by the coupled motion of strip and the roll system. Based on the experimental test, the dynamical behaviors of the rolling mill under the motion of roll system and the strip show multi-modal vibration phenomenon, which are consistent with the variation of rolling interface force and energy parameters. Then, the dynamic geometric parameters of rolling interface and the dynamic stress models are established. Through the simulation analysis, it can be concluded the multi-modal stress state of the rolling interface is caused by the coupling motion of the strip and the roll system. The results show that the multi-modal stress of the rolling interface cause the rolling process instability, leading the "pulling " on the strip and "beating" on the work roll, which change the instability state of the rolling process. This study provides a theoretical basis for the study of multi-modal vibration characteristics of rolling mill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yin, F. C., Zhang, D. H., & Zhang, Y. C. (2017). Dynamic modeling and rolling data analysis of the tandem hot rolling process. Simulation: Transactions of The Society for Modeling and Simulation International, 93(4), 307–321.

    Article  Google Scholar 

  2. Ataka, M. (2015). Rolling technology and theory for the last 100 years: The contribution of theory to innovation in strip rolling technology. ISIJ International, 55(1), 94–107.

    Article  Google Scholar 

  3. Wang, Q. Y., Zhu, Y., & Zhao, Y. (2012). Interdependence between high-speed mill chatter and unsteady lubrication of metal rolling process. Applied Mechanics and Materials, 246–247, 1304–1308.

    Google Scholar 

  4. Fan, X. B., Zang, Y., Jin, K., & Wang, P. A. (2017). Rolling interface friction dynamics of hot strip continuous rolling and its effect on mill chatter. Journal of Vibro engineering, 19(1), 61–74.

    Article  Google Scholar 

  5. Fan, X. B., Zang, Y., & Jin, K. (2016). Rolling process and its influence analysis on hot continuous rolling mill vibration. Applied Physics A, 122(12), 1008.

    Article  Google Scholar 

  6. Hou, D., Zhu, Y., Liu, H. R., Liu, F., & Peng, R. R. (2013). Research on nonlinear vibration characteristics of cold rolling mill based on dynamic rolling force. Journal of Mechanical Engineering, 49(14), 45–50.

    Article  Google Scholar 

  7. Liu, H.R., Zhang, Y., Shi, P.M., & Zhao H.X. (2015). Vibration characteristics of a cold rolling mill with a model of seven degrees of freedom and their influence on dynamic rolling force. Journal of Vibration & Shock, 34(22):98–102&120.

  8. Liu, F., Liu, B., Liu H.R., & Hou, D.X. (2015). Research on vibration behaviors of roll system influenced by dynamic characteristic of rolling force. China Mechanical Engineering 26(13):1731–1735 & 1741.

  9. Liu, F., Liu, B., Liu, H. R., Gong, Y. L., & Wang, S. J. (2015). Vertical vibration of strip mill with the piecewise nonlinear constraint arising from hydraulic cylinder. International Journal of Precision Engineering and Manufacturing, 16(9), 1891–1898.

    Article  Google Scholar 

  10. Zhang, M., Peng, Y., Sun, J. L., & Zhang, Y. (2019). Dynamics of rolling mill drive system considering arc tooth gear dynamic characteristics. Journal of Iron and Steel Research International, 26, 953–961.

    Article  Google Scholar 

  11. Zhang, Y., Peng, Y., Sun, J., & Zang, Y. (2016). Strip rolling mill’s rigid-flexible coupling vibration modeling. Journal of Mechanical Strength, 38(3), 429–434.

    Google Scholar 

  12. Wang, R. P., Peng, Y., Zhang, Y., & Sun, J. L. (2013). Mechanism research of rolling mill coupled vibration. Journal of Mechanical Engineering, 49(12), 66.

    Article  Google Scholar 

  13. Hou, D. X., Peng, R. R., Liu, H. R., & Wang, Y. C. (2013). Study on vertical-horizontal coupling vibration of mill rolls based on the nonlinear rolling force Model. Applied Mechanics and Materials, 385–386, 101–104.

    Article  Google Scholar 

  14. Wang, X.X., Yan, X.Q. (2019). Dynamic Model of the hot strip rolling mill vibration resulting from entry thickness deviation and its dynamic characteristics. Mathematical Problems in Engineering (PT.5): 5868740.1–5868740.11.

  15. Yan, X. Q., Bao, M., Zhu, G. H., & Song, Z. H. (2010). Research on the impact of AGC vibration on the horizontal vibration of the roll system for CSP rolling mill. Advanced Materials Research, 139–141, 2409–2412.

    Article  Google Scholar 

  16. Ling, Q.H., Yan, X.Q., Zhang, Y. (2016). Coupling vibration feature extraction of hot continuous rolling mill based on adaptive frequency domain filtering and S transform. Journal of Vibration, Measurement & Diagnosis, 36(01): 115–119 & 201–202.

  17. Mashekov, S. A., Nurtazayev, A. E., Nugman, E. Z., Mashekova, A. S., Rakhmatulin, M. L., & Poleshchuk, A. I. (2017). Influence of the stands construction on the vibration of the working and backup rolls of the longitudinal-wedge mill. Metalurgija, 56(3–4), 367–370.

    Google Scholar 

  18. Tlusty, J., Chandra, G., Critchley, S., & Paton, D. (1982). Chatter in cold rolling. CIRP Annals—Manufacturing Technology, 31(1), 195–199.

    Article  Google Scholar 

  19. Smith, S., & Tlusty, J. (1990). Update on high-speed milling dynamics. Journal of Engineering for Industry, 112(2), 142–149.

    Article  Google Scholar 

  20. Dwivedy, S. K., Dhutekar, S. S., & Eberhard, P. (2012). Numerical investigation of chatter in cold rolling mills. In: Materials with Complex Behaviour II (pp. 213-227). Springer, Berlin, Heidelberg.

  21. Yun, I. S., Wilson, W. R. D., & Ehmann, K. F. (1998). Review of chatter studies in cold rolling. International Journal of Machine Tools & Manufacture, 38(12), 1499–1530.

    Article  Google Scholar 

  22. Yun, I. S., Wilson, W., & Ehmann, K. F. (1998). Chatter in the strip rolling process, Part 1: Dynamic model of rolling. Journal of Manufacturing Science and Engineering, 120(2), 330–336.

    Article  Google Scholar 

  23. Yun, I. S., Ehmann, K. F., & Wilson, W. (1998). Chatter in the strip rolling process, Part 2: Dynamic rolling experiments. Journal of Manufacturing Science & Engineering, 120(2), 330–336.

    Article  Google Scholar 

  24. Hu, P. H., & Ehmann, K. F. (2000). A dynamic model of the rolling process. Part I: Homogeneous model. International Journal of Machine Tools & Manufacture, 40(1), 1–19.

    Article  Google Scholar 

  25. Hu, P. H., & Ehmann, K. F. (2001). Regenerative effect in rolling chatter. Journal of Manufacturing Processes, 3(2), 82–93.

    Article  Google Scholar 

  26. Hu, P.H. (1998). Stability and chatter in rolling [D], Northwestern University.

  27. Kim, Y., Park, H., Lee, S. S., & Kim, C. W. (2012). Development of a mathematical model for the prediction of vibration in a cold rolling mill including the driving system. Transactions of the Iron & Steel Institute of Japan, 52(6), 1135–1144.

    Article  Google Scholar 

  28. Wu, S. L., Shao, Y. M., Wang, L. M., Yuan, Y., & Mechefske, C. K. (2015). Relationship between chatter marks and rolling force fluctuation for twenty-high roll mill. Engineering Failure Analysis, 55, 87–99.

    Article  Google Scholar 

  29. Zhang, Y. F., Di, H. S., Li, X., Peng, W., Zhao, D. W., & Zhang, D. H. (2020). A novel approach for the edge rolling force and dog-bone shape by combination of slip-line and exponent velocity field. SN Applied Sciences, 2(12), 1–11.

    Article  Google Scholar 

  30. Wang, J., & Chen, C. (2007). On the optimization of a rolling-force model for a hot strip finishing line. ISA Transactions, 46(4), 527–531.

    Article  Google Scholar 

  31. Liu, J., Liu, X., & Le, B. T. (2019). Rolling force prediction of hot rolling based on GA-MELM. Complexity, 4, 1–11.

    Google Scholar 

  32. Hwang, R., Jo, H., Kim, K. S., & Hwang H.J. (2020). Hybrid model of mathematical and neural network formulations for rolling force and temperature prediction in hot rolling processes. IEEE Access (99):1–1.

  33. Mizusawa, T. (2010). Application of spline strip method to analyze vibration of open cylindrical shells. International Journal for Numerical Methods in Engineering, 26(3), 663–676.

    Article  Google Scholar 

  34. Sun, J. L., Peng, Y., Liu, H. M., & Jiang, G. B. (2010). Vibration of moving strip With distributed stress in rolling process. Journal of Iron & Steel Research, 17(4), 24–30.

    Article  Google Scholar 

  35. Vetyukov, Y., Gruber, P. G., Krommer, M., Gerstmayr, J., Gafur, I., & Winter, G. (2017). Mixed Eulerian-Lagrangian description in materials processing: deformation of a metal sheet in a rolling mill. International Journal for Numerical Methods in Engineering, 109, 1371–1390.

    Article  MathSciNet  Google Scholar 

  36. Wang, J.W. (2003). Modern control theory and engineering, Higher Education Press.

  37. Cao, H. D. (1981). Mechanical basis of plastic deformation and rolling principle. Beijing: China Machine Press.

    Google Scholar 

  38. Sun, Y. K. (2010). Model and control of cold and tot strip mill. Beijing: Metallurgical Industry Press.

    Google Scholar 

  39. Choi, I. S., Rossiter, J. A., & Fleming, P. J. (2007). Looper and tension control in hot rolling mills: A survey. Journal of Process Control, 17(6), 509–521.

    Article  Google Scholar 

  40. Yin, F. (2020). Discrete model predictive control scheme for an integrated gauge-looper control system in a tandem hot strip mill. IEEE Access, 99, 1–1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports of the National Key R&D Program of China (No. 2017YFB0304103), the Regional Joint Development Fund (No. U20A20289), the Key projects of Natural Science Foundation of Hebei Province (No. E2017203161) and the Innovation Funding Project for Graduate Students in Hebei Province (No. CXZZBS2020054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Peng, Y., Sun, J. et al. Multi-Modal Stress Characteristics Under Coupling Effect of Strip and Work Roll. Int. J. Precis. Eng. Manuf. 22, 1719–1733 (2021). https://doi.org/10.1007/s12541-021-00559-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00559-1

Keywords

Navigation