Skip to main content
Log in

Single Shot Line Profile Measurement of Multi-layered Film Thicknesses

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

We propose a novel spectroscopic ellipsometry capable of measuring line profile of the film thicknesses with a single image at once. By adopting a polarization-pixelated CMOS camera and an imaging spectrometer, spatial, spectral and polarization information of the film structure can be acquired at the frame rate of the camera without any mechanical or electrical adjustments of polarizing optical components. The proposed system is beneficial not only to provide film thickness of the specimen with a single image acquisition, but also to analyze the spatial features of the film layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rothen, A. (1945). The ellipsometer, an apparatus to measure thicknesses of thin surface films. Review of Scientific Instruments, 16, 26–30.

    Article  Google Scholar 

  2. Engelsen, D. D. (1971). Ellipsometry of anisotropic films. JOSA, 61, 1460–1466.

    Article  Google Scholar 

  3. Jellison, G. E., Jr. (1998). Spectroscopic ellipsometry data analysis: measured versus calculated quantities. Thin Solid Films, 313, 33–39.

    Article  Google Scholar 

  4. Boer, J. H. W. G., Kroesen, G. M. W., & Hoog, F. J. (1997). Spectroscopic rotating compensator ellipsometry in the infrared: retarder design and measurement. Measurement Science and Technology, 8, 484–492.

    Article  Google Scholar 

  5. Chen, L. Y., & Lynch, D. W. (1987). Scanning ellipsometer by rotating polarizer and analyzer. Applied Optics, 26, 5221–5228.

    Article  Google Scholar 

  6. Aspnes, D. E. (2004). Optimizing precision of rotating-analyzer and rotating-compensator ellipsometers. JOSA A, 21, 403–410.

    Article  Google Scholar 

  7. Acher, O., Bigan, E., & Drévillon, B. (1989). Improvements of phase-modulated ellipsometry. Review of Scientific Instruments, 60, 65–77.

    Article  Google Scholar 

  8. Kewu, L., Rui, Z., Ning, J., Youhua, C., Minjuan, Z., Liming, W., et al. (2017). Fast and full range measurements of ellipsometric parameters using a 45 dual-drive symmetric photoelastic modulator. Optics Express, 25, 5725–5733.

    Article  Google Scholar 

  9. Asinovski, L., Beaglehole, D., & Clarkson, M. T. (2008). Imaging ellipsometry: quantitative analysis. Physica Status Solidi, 205, 764–771.

    Article  Google Scholar 

  10. Okabe, H., Matoba, K., Hayakawa, M., Taniguchi, A., Oka, K., Naito, H., & Nakatsuka, N. (2005). New configuration of channeled spectropolarimeter for snapshot polarimetric measurement of materials. Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II. In Proc. SPIE 5878, p. 58780H.

  11. Okabe, H., Hayakawa, M., Naito, H., Taniguchi, A., & Oka, K. (2007). Spectroscopic polarimetry using channeled spectroscopic polarization state generator (CSPSG). Optics Express, 15, 3093–3109.

    Article  Google Scholar 

  12. Kim, D. H., Yun, Y. H., & Joo, K.-N. (2017). SPARSE (spatially phase-retarded spectroscopic ellipsometry) for real-time film analysis. Optics Letters, 42, 3189–3192.

    Article  Google Scholar 

  13. Vilas, J. L., Sanchez-Brea, L. M., & Bernabeu, E. (2013). Optimal achromatic wave retarders using two birefringent wave plates. Applied Optics, 52, 1892–1896.

    Article  Google Scholar 

  14. Tompkins, H. G., & Irene, E. I. (2005). Handbook of ellipsometry. Berlin: Springer.

    Book  Google Scholar 

  15. Millerd, J. E., & Brock, N. J. (2001). Methods and apparatus for splitting, imaging, and measuring wavefronts in interferometry. U. S. Patent 6,304,330.

  16. Creath, K., & Goldstein, G. (2012). Dynamic quantitative phase imaging for biological objects using a pixelated phase mask. Biomedical Optics Express, 3, 2866–2880.

    Article  Google Scholar 

Download references

Funding

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, 2018R1D1A1B07040434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Nam Joo.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S., Park, H.M. & Joo, KN. Single Shot Line Profile Measurement of Multi-layered Film Thicknesses. Int. J. Precis. Eng. Manuf. 21, 2089–2094 (2020). https://doi.org/10.1007/s12541-020-00410-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00410-z

Keywords

Navigation