Skip to main content
Log in

Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The influence of film deposition techniques on the thermal boundary resistance of an aluminum (Al)/silicon (Si) interface was investigated in this study. Al films 100 nm in thickness were deposited on Si(100) wafers using an e-beam evaporator and a direct current (DC) magnetron sputtering system. Their microstructural characteristics were inspected using scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, and X-ray diffraction. The thermal boundary resistance values of the samples were measured using the time-domain thermoreflectance technique and numerically analyzed based on the transient Fourier heat conduction equation. A non-equilibrium molecular dynamics (MD) study was carried out to understand the effect of the atomic disorder at the film/substrate interface. Results show that the film produced by DC sputtering has a rougher surface than that of the e-beam evaporated one and a higher thermal boundary resistance. This is in agreement with the qualitative trend observed from the MD simulation that showed increases in thermal boundary resistance with the depth of atom intermixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C p :

Specific heat

G :

Thermal boundary resistance

I 0 :

Laser intensity

N :

Number of atoms

R :

Reflectance

T :

Temperature

W :

Laser heating function

d :

Film thickness

k B :

Boltzmann constant

i :

Index of atom

m :

Mass

q :

Heat flux

r RMS :

Root mean square roughness

t :

Time

v :

Velocity

z :

Distance in the film thickness direction

β :

Absorption depth

κ :

Thermal conductivity

λ :

Wavelength

ρ :

Density

τ :

Pulse width

References

  1. Fair, R. B. (2012). Rapid thermal processing: Science and technology. Cambridge: Academic Press.

    Google Scholar 

  2. Pop, E. (2010). Energy dissipation and transport in nanoscale devices. Nano Research, 3(3), 147–169.

    Article  Google Scholar 

  3. Schmidt, A. J., Cheaito, R., & Chiesa, M. (2010). Characterization of thin metal films via frequency-domain thermoreflectance. Journal of Applied Physics, 107(2), 024908.

    Article  Google Scholar 

  4. Bordo, K., & Rubahn, H.-G. (2012). Effect of deposition rate on structure and surface morphology of thin evaporated al films on dielectrics and semiconductors. Materials Science, 18(4), 313–317.

    Article  Google Scholar 

  5. Cahill, D. G. (1990). Thermal conductivity measurement from 30 to 750 K: The 3ω method. Review of Scientific Instruments, 61(2), 802–808.

    Article  Google Scholar 

  6. Hatta, I., Sasuga, Y., Kato, R., & Maesono, A. (1985). Thermal diffusivity measurement of thin films by means of an AC calorimetric method. Review of Scientific Instruments, 56(8), 1643–1647.

    Article  Google Scholar 

  7. Murphy, J., & Aamodt, L. (1980). Photothermal spectroscopy using optical beam probing: Mirage effect. Journal of Applied Physics, 51(9), 4580–4588.

    Article  Google Scholar 

  8. Li, W., & Cho, Y. (2014). Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves. Experimental Mechanics, 54(8), 1309–1318.

    Article  Google Scholar 

  9. Li, W., Cho, Y., Lee, J., & Achenbach, J. D. (2013). Assessment of heat treated Inconel X-750 alloy by nonlinear ultrasonics. Experimental Mechanics, 53(5), 775–781.

    Article  Google Scholar 

  10. Son, J. M., Lee, J. H., Kim, J., & Cho, Y. H. (2015). Temperature distribution measurement of Au micro-heater in microfluidic channel using IR microscope. International Journal of Precision Engineering and Manufacturing, 16(2), 367–372.

    Article  Google Scholar 

  11. Cahill, D. G. (2004). Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments, 75(12), 5119–5122.

    Article  Google Scholar 

  12. Smith, A. N., & Norris, P. M. (2001). Influence of intraband transitions on the electron thermoreflectance response of metals. Applied Physics Letters, 78(9), 1240–1242.

    Article  Google Scholar 

  13. Kim, B. (2013). Interface thermal resistance modeling of the silicon-argon interface. International Journal of Precision Engineering and Manufacturing, 14(6), 1023–1028.

    Article  Google Scholar 

  14. Vo, T. Q., & Kim, B. (2015). Interface thermal resistance between liquid water and various metallic surfaces. International Journal of Precision Engineering and Manufacturing, 16(7), 1341–1346.

    Article  Google Scholar 

  15. Frenkel, D., Smit, B., Tobochnik, J., McKay, S. R., & Christian, W. (1997). Understanding molecular simulation. Computers in Physics, 11(4), 351–354.

    Article  Google Scholar 

  16. Ikeshoji, T., & Hafskjold, B. (1994). Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Molecular Physics, 81(2), 251–261.

    Article  Google Scholar 

  17. Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1–19.

    Article  MATH  Google Scholar 

  18. Richardson, C., Ehrlich, M., & Wagner, J. (1999). Interferometric detection of ultrafast thermoelastic transients in thin films: Theory with supporting experiment. Journal of the Optical Society of America B, 16(6), 1007–1015.

    Article  Google Scholar 

  19. Billings, B. H., Bleil, D. F., Gray, D. E., & American Instute of Physics. (1972). American institute of physics handbook. New York: McGraw-Hill.

    Google Scholar 

  20. Müller-Plathe, F. (1997). A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of Chemical Physics, 106(14), 6082–6085.

    Article  Google Scholar 

  21. Yang, N., Luo, T., Esfarjani, K., Henry, A., Tian, Z., Shiomi, J., et al. (2015). Thermal interface conductance between aluminum and silicon by molecular dynamics simulations. Journal of Computational Theoretical Nanoscience, 12(2), 168–174.

    Article  Google Scholar 

  22. Jelinek, B., Groh, S., Horstemeyer, M. F., Houze, J., Kim, S.-G., Wagner, G. J., et al. (2012). Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Physical Review B, 85(24), 245102.

    Article  Google Scholar 

  23. Arshi, N., Lu, J., Lee, C. G., Yoon, J. H., Koo, B. H., & Ahmed, F. (2013). Thickness effect on properties of titanium film deposited by DC magnetron sputtering and electron beam evaporation techniques. Bulletin of Materials Science, 36(5), 807–812.

    Article  Google Scholar 

  24. Stojanovic, N., Yun, J., Washington, E. B., Berg, J. M., Holtz, M. W., & Temkin, H. (2007). Thin-film thermal conductivity measurement using microelectrothermal test structures and finite-element-model-based data analysis. Journal of Microelectromechanical Systems, 16(5), 1269–1275.

    Article  Google Scholar 

  25. Hopkins, P. E. (2013). Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mechanical Engineering, 2013, 682586.

    Article  Google Scholar 

  26. Hopkins, P. E., Norris, P. M., Stevens, R. J., Beechem, T. E., & Graham, S. (2008). Influence of interfacial mixing on thermal boundary conductance across a chromium/silicon interface. Journal of Heat Transfer, 130(6), 062402.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea funded by the Korean government (Ministry of Science & ICT, Grant No. 2015R1C1A1A01053635).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Young Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suk, M.E., Kim, Y.Y. Influence of Deposition Techniques on the Thermal Boundary Resistance of Aluminum Thin-Films. Int. J. Precis. Eng. Manuf. 20, 1435–1441 (2019). https://doi.org/10.1007/s12541-019-00160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00160-7

Keywords

Navigation