Skip to main content
Log in

Three degree of freedom acoustic energy harvester using improved Helmholtz resonator

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents the development of a broadband, multi-frequency acoustic energy harvester. The devised energy harvester contains an optimized Helmholtz resonator with conical cavity and a piezoelectric composite plate. The shape and dimensions of the resonator are selected based on the 3D pressure acoustics analysis in COMSOL Multiphysics®. In addition, a cantilever beam, made up of a brass base, a copper rod and a steel sheet, is integrated with the harvester’s piezoelectric plate to add an extra degree of freedom to the device. The developed harvester exhibited three peaks at 1501, 1766 and 1890 Hz frequencies, which correspond to the three resonant frequencies of the harvester. Furthermore, the harvester, when subjected to 130 dB sinusoidal SPL and 1501 Hz resonant frequency, generated a maximum power of 214.23 μW. However, when the harvester is operated under random (real) SPL in the vicinity of household electric generated, it produced about 250 and 265 mV output AC and DC voltage levels respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C:

Speed of sound

do:

Orifice diameter

Dc:

Diameter of Helmholtz cavity

Fn:

Resonant frequency of Helmholtz resonator

ka:

Stiffness of air residing in Helmholtz cavity

Lo:

Length of orifice

ma:

Air mass at orifice

Pa:

Acoustic pressure near orifice

Pc:

Acoustic pressure inside Helmholtz cavity

PL:

Power delivered to load

RL:

Load Resistance

VL:

Load voltage

References

  1. Khan, F. U., “State of the Art in Acoustic Energy Harvesting,” Journal of Micromechanics and Microengineering, Vol. 25, No. 2, Paper No. 023001, 2015.

    Google Scholar 

  2. Khan, F. U. and Izhar, “Hybrid Acoustic Energy Harvesting Using Combined Electromagnetic and Piezoelectric Conversion,” Review of Scientific Instruments, Vol. 87, No. 2, Paper No. 025003, 2016.

    Google Scholar 

  3. Angelopoulos, C. M., Nikoletseas, S., and Theofanopoulos, G. C., “A Smart System for Garden Watering Using Wireless Sensor Networks,” Proc. of the 9th ACM International Symposium on Mobility Management and Wireless Access, pp. 167–170, 2011.

    Google Scholar 

  4. Khan, F., Sassani, F., and Stoeber, B., “Copper Foil-Type Vibration-Based Electromagnetic Energy Harvester,” Journal of Micromechanics and Microengineering, Vol. 20, No. 12, Paper No. 125006, 2010.

    Google Scholar 

  5. Khan, F., Sassani, F., and Stoeber, B., “Nonlinear Behaviour of Membrane Type Electromagnetic Energy Harvester Under Harmonic and Random Vibrations,” Microsystem Technologies, Vol. 20, No. 7, pp. 1323–1335, 2014.

    Article  Google Scholar 

  6. Zhou, G., Huang, L., Li, W., and Zhu, Z., “Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey,” Journal of Sensors, Vol. 2014, Article ID: 815467, 2014.

  7. Pillai, M. A. and Deenadayalan, E., “A Review of Acoustic Energy Harvesting,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 5, pp. 949–965, 2014.

    Article  Google Scholar 

  8. Seo, H., Ichida, D., Uchida, G., Kamataki, K., Itagaki, N., et al., “Analysis on the Photovoltaic Property of Si Quantum Dot-Sensitized Solar Cells,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 339–343, 2014.

    Article  Google Scholar 

  9. Kang, T. J., Fang, S., Kozlov, M. E., Haines, C. S., Li, N., et al., “Electrical Power from Nanotube and Graphene Electrochemical Thermal Energy Harvesters,” Advanced Functional Materials, Vol. 22, No. 3, pp. 477–489, 2012.

    Article  Google Scholar 

  10. Kim, G.-W., Kim, J., and Kim, J.-H., “Flexible Piezoelectric Vibration Energy Harvester Using a Trunk-Shaped Beam Structure Inspired by an Electric Fish Fin,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 9, pp. 1967–1971, 2014.

    Article  Google Scholar 

  11. Truitt, A. and Mahmoodi, S. N., “A Review on Active Wind Energy Harvesting Designs,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 9, pp. 1667–1675, 2013.

    Article  Google Scholar 

  12. Horowitz, S. B., Sheplak, M., Cattafesta III, L. N., and Nishida, T., “A MEMS Acoustic Energy Harvester,” Journal of Micromechanics and Microengineering, Vol. 16, No. 9, pp. S174–S181, 2006.

    Article  Google Scholar 

  13. Jung, S. S., Kim, Y. T., Lee, Y. B., Kim, H. C., Shin, S. H., and Cheong, C., “Spectrum of Infrasound and Low-Frequency Noise in Passenger Cars,” Journal of the Korean Physical Society, Vol. 55, No. 6, pp. 2405–2410, 2009.

    Article  Google Scholar 

  14. Barlett, M. L. and Wilson, G. R., “Characteristics of Small Boat Acoustic Signatures,” Vol. 112, No. 5, 2002. (DOI: 10.1121/1.4778778)

    Google Scholar 

  15. Yokoyama, Y. and Hashimoto, K., “Development of Low-Noise Air Conditioning Ducts,” East Japan Railway Culture Foundation, Vol. 16, pp. 63–66, 2010.

    Google Scholar 

  16. Gerges, N. Y., “Noise Sources,” http://www.who.int/occupational_ health/publications/noise5.pdf (Accessed 28 NOV 2018)

    Google Scholar 

  17. Greene, C. and Moore, S., “Man-Made Noise,” Marine Mammals and Noise, pp. 101–158, 1995.

    Google Scholar 

  18. Li, B., Laviage, A. J., You, J. H., and Kim, Y.-J., “Harvesting Low-Frequency Acoustic Energy Using Quarter-Wavelength Straight-Tube Acoustic Resonator,” Applied Acoustics, Vol. 74, No. 11, pp. 1271–1278, 2013.

    Article  Google Scholar 

  19. Yang, A., Li, P., Wen, Y., Lu, C., Peng, X., et al., “Note: High-Efficiency Broadband Acoustic Energy Harvesting Using Helmholtz Resonator and Dual Piezoelectric Cantilever Beams,” Review of Scientific Instruments, Vol. 85, No. 6, Paper No. 066103, 2014.

    Google Scholar 

  20. Kimura, S., Tomioka, S., Iizumi, S., Tsujimoto, K., Sugou, T., and Nishioka, Y., “Improved Performances of Acoustic Energy Harvester Fabricated Using Sol/Gel Lead Zirconate Titanate Thin Film,” Japanese Journal of Applied Physics, Vol. 50, No. 6S, Paper No. 06GM14, 2011.

    Google Scholar 

  21. Peng, X., Wen, Y., Li, P., Yang, A., and Bai, X., “A Wideband Acoustic Energy Harvester Using a Three Degree-of-Freedom Architecture,” Applied Physics Letters, Vol. 103, No. 16, Paper No. 164106, 2013.

    Google Scholar 

  22. Lai, T., Huang, C., and Tsou, C., “Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic Devices,” Proc. of MEMS/MOEMS Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 28–33, 2008.

    Google Scholar 

  23. Khan, F. U., “Electromagnetic Energy Harvester for Harvesting Acoustic Energy,” Sādhanā, Vol. 41, No. 4, pp. 397–405, 2016.

    Google Scholar 

  24. Wang, W.-C., Wu, L.-Y., Chen, L.-W., and Liu, C.-M., “Acoustic Energy Harvesting by Piezoelectric Curved Beams in the Cavity of a Sonic Crystal,” Smart Materials and Structures, Vol. 19, No. 4, Paper No. 045016, 2010.

    Google Scholar 

  25. Liu, F., Phipps, A., Horowitz, S., Ngo, K., Cattafesta, L., Nishida, T., and Sheplak, M., “Acoustic Energy Harvesting Using an Electromechanical Helmholtz Resonator,” The Journal of the Acoustical Society of America, Vol. 123, No. 4, pp. 1983–1990, 2008.

    Article  Google Scholar 

  26. Horowitz, S. B., “Development of a MEMS-Based Acoustic Energy Harvester,” University of Florida, 2005.

    Google Scholar 

  27. Iizumi, S., Kimura, S., Tomioka, S., Tsujimoto, K., Uchida, Y., et al, “Lead Zirconate Titanate Acoustic Energy Harvesters Utilizing Different Polarizations on Diaphragm,” Procedia Engineering, Vol. 25, pp. 187–190, 2011.

    Article  Google Scholar 

  28. Wu, L.-Y., Chen, L.-W., and Liu, C.-M., “Acoustic Energy Harvesting Using Resonant Cavity of a Sonic Crystal,” Applied Physics Letters, Vol. 95, No. 1, Paper No. 013506, 2009.

    Google Scholar 

  29. Atrah, A. B. and Salleh, H., “Simulation of Acoustic Energy Harvester Using Helmholtz Resonator with Piezoelectric Backplate,” Proc. of the 20th International Congress on Sound and Vibration (ICSV20), pp. 7–11, 2013.

    Google Scholar 

  30. Li, B., You, J. H., and Kim, Y.-J., “Low Frequency Acoustic Energy Harvesting Using PZT Piezoelectric Plates in a Straight Tube Resonator,” Smart Materials and Structures, Vol. 22, No. 5, Paper No. 055013, 2013.

    Google Scholar 

  31. Li, B., Laviage, A. J., You, J. H., and Kim, Y.-J., “Acoustic Energy Harvesting Using Quarter-Wavelength Straight-Tube Resonator,” Proc. of ASME 2012 International Mechanical Engineering Congress and Exposition, pp. 467–473, 2012.

    Google Scholar 

  32. Khan, F. and Izhar, E., “Acoustic-based Electrodynamic Energy Harvester for Wireless Sensor Nodes Application,” International Journal of Materials Science and Engineering, Vol. 1, No. 2, pp. 72–78, 2013.

    Article  Google Scholar 

  33. Khan, F. U. and Izhar, “Electromagnetic-based Acoustic Energy Harvester,” Proc. of 16th International Multi Topic Conference (INMIC), pp. 125–130, 2013.

    Google Scholar 

  34. Tomioka, S., Kimura, S., Tsujimoto, K., Iizumi, S., Uchida, Y., et al., “Lead-Zirconate-Titanate Acoustic Energy Harvesters with Dual Top Electrodes,” Japanese Journal of Applied Physics, Vol. 50, No. 9S2, Paper No. 09ND16, 2011.

    Google Scholar 

  35. Shinoda, S., Tai, T., Itoh, H., Sugou, T., Ichioka, H., et al., “Lead Zirconate Titanate Acoustic Energy Harvester Proposed for Microelectromechanical System/Ic Integrated Systems,” Japanese Journal of Applied Physics, Vol. 49, No. 4S, Paper No. 04DL21, 2010.

    Google Scholar 

  36. Rossi, M., “Acoustics and Electroacoustics” Artech House Publishers, 1988.

    Google Scholar 

  37. Noh, S., Lee, H., and Choi, B., “A Study on the Acoustic Energy Harvesting with Helmholtz Resonator and Piezoelectric Cantilevers,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 9, pp. 1629–1635, 2013.

    Article  Google Scholar 

  38. Nolle, A., “Small-Signal Impedance of Short Tubes,” The Journal of the Acoustical Society of America, Vol. 25, No. 1, pp. 32–39, 1953.

    Article  Google Scholar 

  39. Wangsness, R. K., “Electromagnetic Fields,” John Wiley & Sons, 2nd Ed., 1986.

    Google Scholar 

  40. Ullah, F., Ali, T., and Jamil, K., “Development of a Low Voltage AC to DC Converter for Meso and Micro Energy Harvesters,” Journal of Engineering and Applied Sciences (JEAS), Vol. 34, No. 2, pp. 34–46, 2015.

    Google Scholar 

  41. Lallart, M., Guyomar, D., Richard, C., and Petit, L., “Nonlinear Optimization of Acoustic Energy Harvesting Using Piezoelectric Devices,” The Journal of the Acoustical Society of America, Vol. 128, No. 5, pp. 2739–2748, 2010.

    Article  Google Scholar 

  42. Matsuda, T., Tomii, K., Hagiwara, S., Miyake, S., Hasegawa, Y., et al., “Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester,” Proc. of Journal of Physics: Conference Series, Paper No. 012003, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izhar, Khan, F.U. Three degree of freedom acoustic energy harvester using improved Helmholtz resonator. Int. J. Precis. Eng. Manuf. 19, 143–154 (2018). https://doi.org/10.1007/s12541-018-0017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-018-0017-z

Keywords

Navigation