Skip to main content
Log in

End-effector path planning and collision avoidance for robot-assisted surgery

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The limited workspace and potential for collision between the robot arm and surrounding environment are challenges in robotassisted surgery. In robot-assisted surgical procedures, the surgical robot’s end-effector must reach the patient’s anatomical targets without collision with the patient or surrounding instrument. This paper proposes a novel end-effector path planning method for a robot-assisted surgical system. A collision detection and avoidance method was also developed to create a collision-free path to enhance patient safety. The proposed algorithm also addresses how to update the planned path when the patient moves during a surgical procedure. Experimental results showed that the proposed method successfully solves the path planning and collision avoidance problem in robot-guided surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto, Y., Ishibashi, Y., Tsuda, E., Tsukada, H., and Toh, S., “Single-Versus Double-Bundle Anterior Cruciate Ligament Reconstruction Results using Navigation: The Japanese Experience,” Operative Techniques in Orthopaedics, Vol. 18, No. 3, pp. 173–180, 2008.

    Article  Google Scholar 

  2. Kondo, E., Yasuda, K., Azuma, H., Tanabe, Y., and Yagi, T., “Prospective Clinical Comparisons of Anatomic Double-Bundle Versus Single-Bundle Anterior Cruciate Ligament Reconstruction Procedures in 328 Consecutive Patients,” The American Journal of Sports Medicine, Vol. 36, No. 9, pp. 1675–1687, 2008.

    Article  Google Scholar 

  3. Seon, J. K., Gadikota, H. R., Wu, J.-L., Sutton, K., Gill, T. J., and Li, G., “Comparison of Single-and Double-Bundle Anterior Cruciate Ligament Reconstructions in Restoration of Knee Kinematics and Anterior Cruciate Ligament Forces,” The American Journal of Sports Medicine, Vol. 38, No. 7, pp. 1359–1367, 2010.

    Article  Google Scholar 

  4. Choi, J. H., Lim, S., Kim, Y., Lee, D., Park, S., et al., “3D Preoperative Surgical Planning Software for Anterior Cruciate Ligament Reconstruction,” Proc. of 13th International Conference on Control, Automation and Systems (ICCAS), pp. 344–346, 2013.

    Google Scholar 

  5. Plaweski, S., Tchouda, S., Dumas, J., Rossi, J., Gaudry, A. M., et al., “Evaluation of a Computer-Assisted Navigation System for Anterior Cruciate Ligament Reconstruction: Prospective Non-Randomized Cohort Study Versus Conventional Surgery,” Orthopaedics & Traumatology: Surgery & Research, Vol. 98, No. 6, pp. S91–S97, 2012.

    Google Scholar 

  6. Mauch, F., Apic, G., Becker, U., and Bauer, G., “Differences in the Placement of the Tibial Tunnel during Reconstruction of the Anterior Cruciate Ligament with and without Computer-Assisted Navigation,” The American Journal of Sports Medicine, Vol. 35, No. 11, pp. 1824–1832, 2007.

    Article  Google Scholar 

  7. Musahl, V., Burkart, A., Debski, R. E., Van Scyoc, A., Fu, F. H., and Woo, S. L., “Accuracy of Anterior Cruciate Ligament Tunnel Placement with an Active Robotic System: A Cadaveric Study,” Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 18, No. 9, pp. 968–973, 2002.

    Article  Google Scholar 

  8. Burkart, A., Debski, R. E., McMahon, P. J., Rudy, T., Fu, F. H., et al., “Precision of ACL Tunnel Placement Using Traditional and Robotic Techniques,” Computer Aided Surgery, Vol. 6, No. 5, pp. 270–278, 2001.

    Article  Google Scholar 

  9. Liao, H., Yoshimura, K., Utsugida, T., Matsumiya, K., Masamune, K., and Dohi, T., “Surgical Manipulator with Linkage Mechanism for Anterior Cruciate Ligament Reconstruction,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1266–1271, 2007.

    Google Scholar 

  10. Huynh, L. M. and Kim, Y. H., “A Computer-Aided and Robot-Assisted Surgical System for Reconstruction of Anterior Cruciate Ligament,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 1, pp. 49–54, 2013.

    Article  Google Scholar 

  11. Petermann, J., Kober, R., Heinze, R., Frölich, J. J., Heeckt, P. F., and Gotzen, L., “Computer-Assisted Planning and Robot-Assisted Surgery in Anterior Cruciate Ligament Reconstruction,” Operative Techniques in Orthopaedics, Vol. 10, No. 1, pp. 50–55, 2000.

    Article  Google Scholar 

  12. Belkhouche, F., “Reactive Path Planning in a Dynamic Environment,” IEEE Transactions on Robotics, Vol. 25, No. 4, pp. 902–911, 2009.

    Article  Google Scholar 

  13. Van Den Berg, J., Abbeel, P., and Goldberg, K., “LQG-MP: Optimized Path Planning for Robots with Motion Uncertainty and Imperfect State Information,” The International Journal of Robotics Research, Vol. 30, No. 7, pp. 895–913, 2011.

    Article  Google Scholar 

  14. Brand, M., Masuda, M., Wehner, N., and Yu, X.-H., “Ant Colony Optimization Algorithm for Robot Path Planning,” Proc. of International Conference on Computer Design and Applications (ICCDA), pp. V3-436-V433-440, 2010.

    Google Scholar 

  15. Yu, J., Zhang, Q., Kroumov, V., Cheng, S., and Zhang, Z., “Path Planning Algorithm for Robot in 3D Environment based on Neural Network,” in: International Conference on Intelligent Robotics and Applications, Xiong, C., Huang, Y., Ciong, Y., Liu, H., (Eds.), Springer, pp. 1081–1088, 2008.

    Chapter  Google Scholar 

  16. Ye, R. and Chen, Y., “Path Planning for Robot Assisted Femur Shaft Fracture Reduction: A Preliminary Investigation,” Proc. of IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems, pp. 113–117, 2009.

    Chapter  Google Scholar 

  17. Zhang, J., Roland, J. T., Manolidis, S., and Simaan, N., “Optimal Path Planning for Robotic Insertion of Steerable Electrode Arrays in Cochlear Implant Surgery,” Journal of Medical Devices, Vol. 3, No. 1, Paper No. 011001, 2009.

    Google Scholar 

  18. Jackson, R. C. and Çavusoglu, M. C., “Needle Path Planning for Autonomous Robotic Surgical Suturing,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 1669–1675, 2013.

    Google Scholar 

  19. Morvan, T., Martinsen, M., Reimers, M., Samset, E., and Elle, O. J., “Collision Detection and Untangling for Surgical Robotic Manipulators,” The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 5, No. 3, pp. 233–242, 2009.

    Article  Google Scholar 

  20. Austad, A., Elle, O. J., Samset, E., Fontenelle, H., Fosse, E., and Malvig, K. E., “Collision Avoidance in Robot Assisted Surgery,” in: CARS 2002 Computer Assisted Radiology and Surgery, Lemke, H. U., Vannier, M. W., Inamura, K., Farman, A. G., Doi, K., Reiber, J. H. C. (Eds.), Springer, pp. 80–85, 2002.

    Chapter  Google Scholar 

  21. Craig, J. J., “Introduction to Robotics: Mechanics and Control,” Pearson Prentice Hall Upper Saddle River, pp. 117–121, 2005.

    Google Scholar 

  22. Nguyen, Q. C., Kim, Y. J, and Kwon, H. D., “Optimization of Layout and Path Planning of Surgical Robotic System,” International Journal of Control, Automation and Systems, In Press, Corrected Proof, DOI No. 10.1007/s12555-015-0418-z, 2016.

    Google Scholar 

  23. Kitware Inc., “Earlier Release(5.10.1),” http://www.vtk.org/download/ (Accessed 22 NOV 2016)

    Google Scholar 

  24. Gottschalk, S., Lin, M. C., and Manocha, D., “Obbtree: A Hierarchical Structure for Rapid Interference Detection,” Proc. of 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180, 1996.

    Google Scholar 

  25. Stewart, J. S., “Calculus: Early Transcendentals,” Thomson Publishing Company, 6th Ed., pp. 794–795, 2008.

    Google Scholar 

  26. Denso Wave Inc., “6-Axis Robots: VS Series VS-068/087,” http://www.denso-wave.com/en/robot/product/five-six/vs068-087.html (Accessed 21 NOV 2016)

    Google Scholar 

  27. Northern Digital Inc., “Polaris Optical Tracking Systems,” http://www.ndigital.com/medical/products/polaris-family/ (Accessed 21 NOV 2016)

    Google Scholar 

  28. Kyoto Kagaku Co., Ltd., “Whole Body Phantom PBU-60,” https://www.kyotokagaku.com/products/detail03/ph-2b.html (Accessed 21 NOV 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyukDong Kwon.

Additional information

Quoc Cuong Nguyen and Youngjun Kim contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q.C., Kim, Y., Park, S. et al. End-effector path planning and collision avoidance for robot-assisted surgery. Int. J. Precis. Eng. Manuf. 17, 1703–1709 (2016). https://doi.org/10.1007/s12541-016-0197-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0197-3

Keywords

Navigation