Skip to main content
Log in

Quasi-in-situ EBSD Study on the Influence of Precipitations on the Strength, Plasticity and Deformation Mechanism in Al–Cu–Li Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present study investigates the tensile properties, activation of slip, and grain boundary cracks in Al–Cu–Li ternary alloys with varying precipitations resulting from different aging treatments. The size and distribution of precipitations were ascertained using transmission electron microscopy. The slip activtiy with tensile strain was observed by the electron back-scatter diffraction and scanning electron microscopy. Furthermore, the influence of precipitated strengthening was quantitatively evaluated. The presence of precipitations hinders dislocation movement, increasing strength but reducing the appearance of deformation mechanisms like slip activity, slip transfer, intragranularly misoriented grain boundaries, and lattice rotation, ultimately resulting in reduced ductility. In the sample of T6 aging for 72 h, the coarsed θ′ phase promotes the formation of dislocation rings, resulting in a decrease in the percentage of grains activated with slip to 9.7%. The percentage of grain boundaries with crack initiation reaches 6.9%. On the contrary, in the sample dominated by the T1 phase, the percentage of grains that activate slip is 14.6%, and the percentage of grain boundaries that initiate cracks is only 1.4%. This is because the continuous shear of the T1 phases helps disperse coplanar slip, thereby avoiding cracking caused by excessive stress concentration. Hence, to enhance alloy strength while preserving a certain level of ductility, it is vital to promote the precipitation of the T1 phase and avoid the coarsening of the θ′ phase. This study provides a new insight into the influence of precipitations on the strength and plasticity of Al–Cu–Li alloys.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N.E. Prasad, A. Gokhale, R.J.H. Wanhill, Aluminum–Lithium Alloys: Processing, Properties, and Applications (Elsevier, Amsterdam, 2013)

    Google Scholar 

  2. W. Hu, J.Q. Chen, S. Han, J.J. Xu, J.L. Miao, T. Xing, R.G. Guan, Initial report on the oriented-precipitation of T1-phase in creep-aged Al–Cu–Li single crystal. Met. Mater. Int. 29(5), 1382–1389 (2023). https://doi.org/10.1007/s12540-022-01307-4

    Article  CAS  Google Scholar 

  3. B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, M. Weyland, The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater. 61(6), 2207–2218 (2013). https://doi.org/10.1016/j.actamat.2012.12.041

    Article  CAS  Google Scholar 

  4. R.W. Fonda, J.F. Bingert, Precipitation and grain refinement in a 2195 Al friction stir weld. Metall. Mater. Trans. A 37(12), 3593–3604 (2006). https://doi.org/10.1007/s11661-006-1054-2

    Article  Google Scholar 

  5. Y.Z. Li, G.J. Zeng, D.D. Lu, Z.Z. Liu, S.X. Deng, P.C. Ma, Y.L. Chen, R.F. Zhang, J.F. Li, Effect of sub-structure and precipitation behavior on mechanical properties of Al–xCu–Li alloys. Met. Mater. Int. 29(11), 3204–3221 (2023). https://doi.org/10.1007/s12540-023-01439-1

    Article  CAS  Google Scholar 

  6. M. Murayama, K. Hono, Role of Ag and Mg on precipitation of T1 phase in an Al–Cu–Li–Mg–Ag alloy. Scr. Mater. 44(4), 701–706 (2001). https://doi.org/10.1016/s1359-6462(00)00651-5

    Article  CAS  Google Scholar 

  7. B.M. Gable, A.W. Zhu, A.A. Csontos, E.A. Starke, The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Li–Cu–X alloy. J. Light. Met. 1(1), 1–14 (2001). https://doi.org/10.1016/s1471-5317(00)00002-x

    Article  Google Scholar 

  8. H.Y. Li, W. Kang, X.C. Lu, Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al–Li alloy. J. Alloys Compd. 640, 210–218 (2015). https://doi.org/10.1016/j.jallcom.2015.03.212

    Article  CAS  Google Scholar 

  9. O.S. Es-Said, C.J. Parrish, C.A. Bradberry, J.Y. Hassoun, R.A. Parish, A. Nash, N.C. Smythe, K.N. Tran, T. Ruperto, E.W. Lee, D. Mitchell, C. Vinquist, Effect of stretch orientation and rolling orientation on the mechanical properties of 2195 Al–Cu–Li alloy. J. Mater. Eng. Perform. 20(7), 1171–1179 (2010). https://doi.org/10.1007/s11665-010-9746-6

    Article  CAS  Google Scholar 

  10. B.I. Rodgers, P.B. Prangnell, Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195. Acta Mater. 108, 55–67 (2016). https://doi.org/10.1016/j.actamat.2016.02.017

    Article  CAS  Google Scholar 

  11. F. Liu, Z.Y. Liu, M. Liu, Y.C. Hu, Y. Chen, S. Bai, Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al–Cu–Li alloy during different pre-deformation processes. Mater. Sci. Eng. A 726, 309–319 (2018). https://doi.org/10.1016/j.msea.2018.04.047

    Article  CAS  Google Scholar 

  12. C.P. Blankenship, E. Hornbogen, E.A. Starke, Predicting slip behavior in alloys containing shearable and strong particles. Mater. Sci. Eng. A 169(1–2), 33–41 (1993). https://doi.org/10.1016/0921-5093(93)90596-7

    Article  Google Scholar 

  13. H. Liu, Y.P. Gao, L. Qi, Y.Z. Wang, J.F. Nie, Phase-field simulation of orowan strengthening by coherent precipitate plates in an aluminum alloy. Metall. Mater. Trans. A 46(7), 3287–3301 (2015). https://doi.org/10.1007/s11661-015-2895-3

    Article  CAS  Google Scholar 

  14. J.F. Nie, B.C. Muddle, I.J. Polmear, The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys. Mater. Sci. Forum 217–222, 1257–1262 (1996). https://doi.org/10.4028/www.scientific.net/MSF.217-222.1257

    Article  Google Scholar 

  15. T. Dorin, F. De Geuser, W. Lefebvre, C. Sigli, A. Deschamps, Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy. Mater. Sci. Eng. A 605, 119–126 (2014). https://doi.org/10.1016/j.msea.2014.03.024

    Article  CAS  Google Scholar 

  16. A. Deschamps, B. Decreus, F. Geuser, T. Dorin, M. Weyland, The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater. 61(11), 4010–4021 (2013). https://doi.org/10.1016/j.actamat.2013.03.015

    Article  CAS  Google Scholar 

  17. M.M. Arani, G. Meyruey, N.C. Parson, W.J. Poole, The effect of Mn containing dispersoids on the distribution of slip and fracture mode in Al–Mg–Si–Mn alloys. Scr. Mater. 228, 115343 (2023). https://doi.org/10.1016/j.scriptamat.2023.115343

    Article  CAS  Google Scholar 

  18. S.S. Jiang, Y. Jia, X.J. Wang, J.F. Jiang, Precise measurement of strain accommodation in a Mg–Gd–Y–Zn alloy using cross-correlation-based high resolution EBSD. Mater Charact 165, 110384 (2020). https://doi.org/10.1016/j.matchar.2020.110384

    Article  CAS  Google Scholar 

  19. R. Zhang, Z.T. Xu, L.F. Peng, X.M. Lai, M.W. Fu, Intragranularly misoriented grain boundary evolution affected by local constraints and grain size in micro-scale deformation of ultra-thin metallic sheets. Int. J. Plast. 157, 103377 (2022). https://doi.org/10.1016/j.ijplas.2022.103377

    Article  CAS  Google Scholar 

  20. S. Paik, N. Naveen Kumar, B.K. Dutta, R. Tewari, P.V. Durgaprasad, Experimental investigation and crystal plasticity simulation with damage for single crystal copper subjected to tensile load. Met. Mater. Int. 29(3), 618–633 (2023). https://doi.org/10.1007/s12540-022-01256-y

    Article  CAS  Google Scholar 

  21. D.F. Shi, A. Ma, M.T. Pérez-Prado, C.M. Cepeda-Jiménez, Activation of second-order <c+a> pyramidal slip and other secondary mechanisms in solid solution Mg–Zn alloys and their effect on tensile ductility. Acta Mater. 244, 118555 (2023). https://doi.org/10.1016/j.actamat.2022.118555

    Article  CAS  Google Scholar 

  22. X.Y. Huan, C.L. Liu, K.S. Miao, H. Wu, R.G. Li, X.W. Li, G.H. Fan, In-situ EBSD study on the microstructure evolution of an Al–Mg–Si–Fe alloy with different precipitation free zones during tension at cryogenic and ambient temperatures. Mater. Sci. Eng. A 873, 145029 (2023). https://doi.org/10.1016/j.msea.2023.145029

    Article  CAS  Google Scholar 

  23. Z. Shang, T. Sun, J. Ding, N.A. Richter, N.M. Heckman, B.C. White, B.L. Boyce, K. Hattar, H. Wang, X. Zhang, Gradient nanostructured steel with superior tensile plasticity. Sci. Adv. 9(22), eadd9780 (2023). https://doi.org/10.1126/sciadv.add9780

    Article  CAS  Google Scholar 

  24. S. Nagarajan, R. Jain, N.P. Gurao, Microstructural characteristics governing the lattice rotation in Al–Mg alloy using in-situ EBSD. Mater Charact 180, 111405 (2021). https://doi.org/10.1016/j.matchar.2021.111405

    Article  CAS  Google Scholar 

  25. L. Patriarca, W. Abuzaid, H. Sehitoglu, H. Maier, Slip transmission in bcc FeCr polycrystal. Mater. Sci. Eng. A 588, 308–317 (2013). https://doi.org/10.1016/j.msea.2013.08.050

    Article  CAS  Google Scholar 

  26. R. Alizadeh, M. Peña-Ortega, T.R. Bieler, J. Llorca, A criterion for slip transfer at grain boundaries in Al. Scr. Mater. 178, 408–412 (2020). https://doi.org/10.1016/j.scriptamat.2019.12.010

    Article  CAS  Google Scholar 

  27. N. Malyar, J.-S. Micha, G. Dehm, C. Kirchlechner, Size effect in bi-crystalline micropillars with a penetrable high angle grain boundary. Acta Mater. 129, 312–320 (2017). https://doi.org/10.1016/j.actamat.2017.03.003

    Article  CAS  Google Scholar 

  28. S. Hémery, P. Nizou, P. Villechaise, In situ SEM investigation of slip transfer in Ti–6Al–4V: effect of applied stress. Mater. Sci. Eng. A 709, 277–284 (2018). https://doi.org/10.1016/j.msea.2017.10.058

    Article  CAS  Google Scholar 

  29. S. Zaefferer, J.C. Kuo, Z. Zhao, M. Winning, D. Raabe, On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater. 51(16), 4719–4735 (2003). https://doi.org/10.1016/s1359-6454(03)00259-3

    Article  CAS  Google Scholar 

  30. T.R. Bieler, R. Alizadeh, M. Peña-Ortega, J. Llorca, An analysis of (the lack of) slip transfer between near-cube oriented grains in pure Al. Int. J. Plast. 118, 269–290 (2019). https://doi.org/10.1016/j.ijplas.2019.02.014

    Article  CAS  Google Scholar 

  31. X.J. You, J. Yang, C.Y. Dan, H. Chen, Y.C. Cui, H.W. Wang, M.L. Wang, Z. Chen, Slip-induced mechanism of the orientation-dependent deformation banding in cold rolled Al–Mg alloy. Mater Charact 185, 111732 (2022). https://doi.org/10.1016/j.matchar.2022.111732

    Article  CAS  Google Scholar 

  32. F. Di Gioacchino, J. Quinta da Fonseca, An experimental study of the polycrystalline plasticity of austenitic stainless steel. Int. J. Plast. 74, 92–109 (2015). https://doi.org/10.1016/j.ijplas.2015.05.012

    Article  CAS  Google Scholar 

  33. G.A. He, K. Li, Y. Yang, Y. Liu, W.K. Wu, C. Huang, Effect of heat treatment on the microstructure and mechanical properties of cryogenic rolling 2195 Al–Cu–Li alloy. Mater. Sci. Eng. A 822, 141682 (2021). https://doi.org/10.1016/j.msea.2021.141682

    Article  CAS  Google Scholar 

  34. H. Wu, S.P. Wen, H. Huang, B.L. Li, X.L. Wu, K.Y. Gao, W. Wang, Z.R. Nie, Effects of homogenization on precipitation of Al3 (Er, Zr) particles and recrystallization behavior in a new type Al–Zn–Mg–Er–Zr alloy. Mater. Sci. Eng. A 689, 313–322 (2017). https://doi.org/10.1016/j.msea.2017.02.071

    Article  CAS  Google Scholar 

  35. J.F. Nie, B.C. Muddle, Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Mater. 56(14), 3490–3501 (2008). https://doi.org/10.1016/j.actamat.2008.03.028

    Article  CAS  Google Scholar 

  36. J.J. Shen, B. Chen, J. Wan, J.H. Shen, J.S. Li, Effect of annealing on microstructure and mechanical properties of an Al–Mg–Sc–Zr alloy. Mater. Sci. Eng. A 838, 142821 (2022). https://doi.org/10.1016/j.msea.2022.142821

    Article  CAS  Google Scholar 

  37. A.W. Zhu, A. Csontos, E.A. Starke, Computer experiment on superposition of strengthening effects of different particles. Acta Mater. 47(6), 1713–1721 (1999). https://doi.org/10.1016/s1359-6454(99)00077-4

    Article  CAS  Google Scholar 

  38. A. de Vaucorbeil, W.J. Poole, C.W. Sinclair, The superposition of strengthening contributions in engineering alloys. Mater. Sci. Eng. A 582, 147–154 (2013). https://doi.org/10.1016/j.msea.2013.06.032

    Article  CAS  Google Scholar 

  39. A. Abd El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, D. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: a review. J. Adv. Res. 10, 49–67 (2018). https://doi.org/10.1016/j.jare.2017.12.004

    Article  CAS  Google Scholar 

  40. J.F. Nie, B.C. Muddle, On the form of the age-hardening response in high strength aluminium alloys. Mater. Sci. Eng. A 319–321, 448–451 (2001). https://doi.org/10.1016/s0921-5093(01)01054-1

    Article  Google Scholar 

  41. A.A. Csontos, E.A. Starke, The effect of processing and microstructure development on the slip and fracture behavior of the 2.1 wt pct Li AF/C-489 and 1.8 wt pct Li AF/C-458 Al–Li–Cu–X alloys. Metall. Mater. Trans. A 31(8), 1965–1976 (2000). https://doi.org/10.1007/s11661-000-0224-x

    Article  Google Scholar 

  42. D.F. Shi, M.T. Pérez-Prado, C.M. Cepeda-Jiménez, Effect of solutes on strength and ductility of Mg alloys. Acta Mater. 180, 218–230 (2019). https://doi.org/10.1016/j.actamat.2019.09.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U21B6004), Major Project of Scientific Innovation of Hunan Province (Grant No. 2021GK1040), and National Key R&D Program of China (Grant No. 2020YFA0711104).

Author information

Authors and Affiliations

Authors

Contributions

ZJ: Data acquisition, writing—original draft. JZ: Conceptualization, funding acquisition. DS: Investigation, validation, supervision. CL: Supervision.

Corresponding author

Correspondence to Dongfeng Shi.

Ethics declarations

Conflict of interest

Authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhang, J., Shi, D. et al. Quasi-in-situ EBSD Study on the Influence of Precipitations on the Strength, Plasticity and Deformation Mechanism in Al–Cu–Li Alloys. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01614-4

Keywords

Navigation