Skip to main content
Log in

Recent Advances in High Entropy Alloy Fillers for Brazing Similar and Dissimilar Materials: A Review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Continuous development of novel materials for various engineering and industrial applications including automotive, aerospace, electrical and petrochemical industries demands the continuous advancement of novel brazing filler metals to join similar and dissimilar materials. Furthermore, developing complex materials, for which traditional fillers cannot adequately form joints, necessitates the evolution of novel fillers. High entropy alloys (HEAs) fillers are one of the most exciting developments in the field of materials science in recent years. The aim of this review is to provide the current status and progress on HEAs brazing filler metals to join similar and dissimilar materials including metal-to-ceramics joining. HEAs constitute a new class of materials, containing five or more than five elements in equimolar or near equimolar compositions with the possible alloying concentration of each principal element varying from 5 to 35 at%. HEAs as a brazing filler metal exhibits an excellent set of desirable properties including mechanical and functional properties, good corrosion and oxidation resistance, exceptional wear resistance, and high-temperature stability. In brazing applications, the use of traditional filler metals leads to the formation of brittle intermetallic compounds (IMCs), segregation of elements, and residual stresses at the joint interface that eventually affect the joint performance. These microstructural changes become more serious during dissimilar joining especially metal-to-ceramic brazing. Owing to the high entropy effect, HEAs filler results in better mixing of filler elements, forming random solid solution structure, thus hindering the formation of brittle IMCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Lin, R.-K. Shiue, S.-K. Wu, H.-L. Huang, Entropy 21, 283 (2019). https://doi.org/10.3390/e21030283

  2. X. Yin, Q. Ma, B. Cui et al., Current review on the research status of cemented carbide brazing: filler materials and mechanical properties. Met. Mater. Int. 27, 571–583 (2021). https://doi.org/10.1007/s12540-020-00608-w

    Article  CAS  Google Scholar 

  3. Q. Zhou, T.R. Bieler, J.D. Nicholas, Acta Mater. 148, 156–162 (2018)

  4. W.M. Fr, D.H. Yoon, K. Raju et al., Met. Mater. Int. 24, 157–169 (2018). https://doi.org/10.1007/s12540-017-7160-4

  5. H.S. Na, J.K. Kim, B.Y. Jeong et al., Met. Mater. Int. 13, 511–515 (2007). https://doi.org/10.1007/BF03027911

  6. H. Heo, G. Kim, D.Y. Kim, C. Moon, K.C. Kim, K. Jung, C.-Y. Kang, Microstructure and mechanical properties of Ni foam/stainless steel joint brazed using Ni-based alloy. Mater. Sci. Eng. A 740–741, 63–70 (2019). https://doi.org/10.1016/j.msea.2018.10.022

    Article  CAS  Google Scholar 

  7. Y. Luo, W. Jiang, W. Zhang, Y.C. Zhang, W. Woo, S.T. Tu, Mater. Design 84, 212–222 (2015). https://doi.org/10.1016/j.matdes.2015.06.111

  8. C.J. Munez, M.A. Garrido, J. Rams, A. Ureña, J. Nucl. Mater. 418(1–3), 239–248 (2011). https://doi.org/10.1016/j.jnucmat.2011.07.008

  9. T. Gu, V.S. Tong, C.M. Gourlay, T.B. Britton, Acta Mater. 196, 31–43 (2020). https://doi.org/10.1016/j.actamat.2020.06.013

  10. J.A. Fernie, R.A.L. Drew, K.M. Knowles, Int. Mater. Rev. 54(5), 283–331 (2009). https://doi.org/10.1179/174328009X461078

  11. J. Zhang, J. Gu, L. Li, H. Yong, B. Wei, Int. J. Modern Phys. B 23, 131–1318 (2009). https://doi.org/10.1142/S0217979209060877

  12. R. Sun, Y. Zhu, W. Guo, P. Peng, Yu. Liuhe Li, J.F. Zhang, F. Li, L. Zhang, Vacuum 148, 18–26 (2018). https://doi.org/10.1016/j.vacuum.2017.10.030

  13. H. He, S. Huang, Y. Xiao, R. Goodall, Mater. Lett. 281, 128642 (2020). https://doi.org/10.1016/j.matlet.2020.128642

  14. H. He, S. Huang, Y. Ye, Y. Xiao, Z. Zhang, M. Li, R. Goodall, J. Alloys Compd. 845, 156240 (2020). https://doi.org/10.1016/j.jallcom.2020.156240

  15. L.X. Zhang, J.M. Shi, H.W. Li, X.Y. Tian, J.C. Feng, Mater. Des. 97, 230–238 (2016). https://doi.org/10.1016/j.matdes.2016.02.055

  16. G. Wang, Y. Yang, M. Wang, R. He, C. Tan, W. Cao, H. Xu, J. Eur. Ceram. Soc. 41, 54–61 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.08.050

  17. X. Hao, H. Dong, Y. Xia, P. Li, J. Alloy. Compd. 803, 649–657 (2019). https://doi.org/10.1016/j.jallcom.2019.06.225

  18. G. Wang, Y. Yang, R. He, C. Tan, M. Huttula, W. Cao, J. Eur. Ceram. Soc. 40, 3391–3398 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.044

  19. W. Tillmann, T. Ulitzka, L. Wojarski, M. Manka, H. Ulitzka, D. Wagstyl, Weld. World 64, 201–208 (2020). https://doi.org/10.1007/s40194-019-00824-y

    Article  CAS  Google Scholar 

  20. D. Liu, J. Wang, M. Xu, H. Jiao, Y. Tang, D. Li et al., J. Manuf. Process. 58, 500–509 (2020). https://doi.org/10.1016/j.jmapro.2020.08.031

  21. D. Liu, R. Guo, Y. Hu, M. Shen, Y. Tang, L. Zhao et al., Met. Mater. Int. 26, 854–866 (2020). https://doi.org/10.1007/s12540-019-00400-5

  22. D. Liu, R. Guo, Y. Hu, J. Zeng, M. Shen, Y. Tang et al., J. Mater. Res. Technol. 9, 11453–11463 (2020). https://doi.org/10.1016/j.jmrt.2020.08.028

  23. M. Gao, B. Schneiderman, S.M. Gilbert, Z. Yu, Metall. Mater. Trans. A 50, 5117–5127 (2019). https://doi.org/10.1007/s11661-019-05386-8

  24. D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng et al., Mater. Lett. 215, 11–14 (2018). https://doi.org/10.1016/j.matlet.2017.12.003

  25. W. Tillmann, L. Wojarski, D. Stangier, M. Manka, C. Timmer, Weld World 64, 1597–1604 (2020). https://doi.org/10.1007/s40194-020-00944-w

  26. H. Azhari-Saray, M. Sarkari-Khorrami, A. Nademi-Babahadi, S.F. Kashani-Bozorg, Intermetallics 124, 106876 (2020). https://doi.org/10.1016/j.intermet.2020.106876

  27. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

  28. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567

  29. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.08

  30. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153–1158 (2014). https://doi.org/10.1126/science.1254581

  31. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2(3), 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690

  32. J.W. Yeh, JOM 65, 1759–1771 (2013). https://doi.org/10.1007/s11837-013-0761-6

  33. R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, 3rd edn. (PWS Publishing Company, Boston, 1994), pp.353–358

    Google Scholar 

  34. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall Inc, Upper Saddle River, 2001), pp.327–340

    Google Scholar 

  35. C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. 36, 1263–1271 (2005). https://doi.org/10.1007/s11661-005-0218-9

  36. A. Li, X. Zhang, Acta Metall. Sin. (English Lett.) 22(3), 219–224 (2009). https://doi.org/10.1016/S1006-7191(08)60092-7

  37. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18(9), 1758–1765 (2010). https://doi.org/10.1016/j.intermet.2010.05.014

  38. M.F. Del Grosso, G. Bozzolo, H.O. Mosca, J. Alloys Compd. 534, 25–31 (2012). https://doi.org/10.1016/j.jallcom.2012.04.053

  39. C. Ng, S. Guo, J. Luan, S. Shi, C.T. Liu, Intermetallics 31, 165–172 (2012). https://doi.org/10.1016/j.intermet.2012.07.001

  40. M.S. Lucas, G.B. Wilks, L. Mauger et al., P.K. Liaw, Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 251907 (2012). https://doi.org/10.1063/1.4730327

    Article  CAS  Google Scholar 

  41. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61(13), 4887–4897 (2013). https://doi.org/10.1016/j.actamat.2013.04.058

  42. M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, J.Y. Gan, Appl. Phys. Lett. 92, 052109 (2008). https://doi.org/10.1063/1.2841810

  43. Z.H. Cao, K. Hu, X.K. Menga, J. Appl. Phys. 106, 113513 (2009). https://doi.org/10.1063/1.3266164

  44. M.H. Tsai, C.W. Wang, C.W. Tsai, W.J. Shen, J.W. Yeh, J.Y. Gan, W.W. Wu, J. Electrochem. Soc. 158, H1161 (2011). https://doi.org/10.1149/2.056111jes

  45. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103(1), 41–46 (2007). https://doi.org/10.1016/j.matchemphys.2007.01.003

  46. J. Dąbrowa, M. Zajusz, W. Kucza et al., J. Alloy. Compd. 783, 193–207 (2019). https://doi.org/10.1016/j.jallcom.2018.12.300

  47. S. Ranganathan, Curr. Sci. 85(10), 1404–1406 (2003)

  48. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19(5), 698–706 (2011). https://doi.org/10.1016/j.intermet.2011.01.004

  49. S.H. Rajendran, D.H. Jung, J.P. Jung, J. Mater. Sci. Mater. Electron. 33, 3687–3710 (2022). https://doi.org/10.1007/s10854-021-07562-2

  50. S.H. Rajendran, J.H. Seung, J.P. Jung, Metals 11(3), 509 (2021). https://doi.org/10.3390/met11030509

  51. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

  52. Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007). https://doi.org/10.1063/1.2734517

  53. F.J. Wang, Y. Zhang, Mater. Sci. Eng. A 496(1–2), 214–216 (2008). https://doi.org/10.1016/j.msea.2008.05.020

  54. H. Chou, Y. Chang, S. Chen, J. Yeh, Mater. Sci. Eng. B-Adv Funct. Solid-State Mater. 163(3), 184–189 (2009). https://doi.org/10.1016/j.mseb.2009.05.024

  55. A. Takeuchi, A. Inoue, Mater. Trans. JIM 41(11), 1372–1378 (2000). https://doi.org/10.2320/matertrans1989.41.1372

  56. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10(6), 534–538 (2008). https://doi.org/10.1002/adem.200700240

  57. O.N. Senkov, D.B. Miracle, Mater. Res. Bull. 36(12), 2183–2198 (2001). https://doi.org/10.1016/S0025-5408(01)00715-2

  58. X. Ji, Int. J. Cast Met. Res. 28(4), 229–233 (2015). https://doi.org/10.1179/1743133615Y.0000000004

  59. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109(10), 103505 (2011). https://doi.org/10.1063/1.3587228

  60. Y. Zhang, Z. Lu, S. Ma, P. Liaw, Z. Tang, Y. Cheng, M. Gao, MRS Commun 4(2), 57–62 (2014). https://doi.org/10.1557/mrc.2014.11

  61. Y. Zhang, S. Guo, C.T. Liu, X. Yang, ed. by M. Gao, J.W. Yeh, P. Liaw, Y. Zhang (Springer, Cham, 2016), pp. 21–49. https://doi.org/10.1007/978-3-319-27013-5_2

  62. X. Yang, Y. Zhang, Mater. Chem. Phys. 132(2–3), 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

  63. Y. Zhang, X. Yang, P.K. Liaw, JOM 64, 830–838 (2012). https://doi.org/10.1007/s11837-012-0366-5

  64. X. Yang, S.Y. Chen, J.D. Cotton, Y. Zhang, JOM 66, 2009–2020 (2014). https://doi.org/10.1007/s11837-014-1059-z

  65. Y. Zhang, C.C. Koch, S.G. Ma, H. Zhang, Y. Pan, ed. by M. Gao, J.W. Yeh, P. Liaw, Y. Zhang (Springer, Cham, 2016), pp. 151–179. https://doi.org/10.1007/978-3-319-27013-5_5

  66. F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, ASME J. Eng. Mater. Technol. 131(3), 034501 (2009). https://doi.org/10.1115/1.3120387

  67. C. Suryanarayana, Mechanical alloying and milling (Marcel Dekker, New York, 2004). https://doi.org/10.1201/9780203020647

    Book  Google Scholar 

  68. S. Varalakshmi, G.A. Rao, M. Kamaraj, B.S. Murty, J. Mater. Sci. 45(19), 5158–5163 (2010). https://doi.org/10.1007/s10853-010-4246-5

  69. P. Nagy, N. Rohbeck, G. Roussely, P. Sortais, J.L. Lábár, J. Gubicza, J. Michler, L. Pethö, Surf. Coat. Technol. 386, 125465 (2020). https://doi.org/10.1016/j.surfcoat.2020.125465

  70. K.H. Cheng, C.H. Lai, S.J. Lin, J.W. Yeh, Thin Solid Films 519(10), 3185–3190 (2011). https://doi.org/10.1016/j.tsf.2010.11.034

  71. M.H. Tsai, J.W. Yeh, J.Y. Gan, Thin Solid Film 516(16), 5527–5530 (2008). https://doi.org/10.1016/j.tsf.2007.07.109

  72. American Welding Society, Brazing handbook, 4th edn. (American welding Society, Miami, 1991)

    Google Scholar 

  73. P. Roberts, Industrial brazing practice, 2nd edn. (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  74. S. Mishra, A. Sharma, D.H. Jung, J.P. Jung, Met. Mater. Int. 26, 1087–1098 (2020). https://doi.org/10.1007/s12540-019-00536-4

  75. K. Bobzin, M. Öte, S. Wiesner, in IOP Conference Series, Materials Science and Engineering, vol.181(1) (2017). https://doi.org/10.1088/1757-899X/181/1/012027

  76. B. Ahn, Metals 11(7), 1037 (2021). https://doi.org/10.3390/met11071037

  77. Y. Song, D. Liu, S. Hu, X. Song, J. Cao, J. Eur. Ceram. Soc. 39(4), 696–704 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.046

  78. K.M. Jasim, F.A. Hashim, R.H. Yousif, R.D. Rawlings, A.R. Boccaccini, Ceram. Int. 36(8), 2287–2295 (2010). https://doi.org/10.1016/j.ceramint.2010.07.029

  79. M. Wang, X.G. Qi, M.A. Chen, H.R. Geng, Hot Work. Technol. 38, 180–182 (2009). ((in Chinese))

  80. Z. Luo, G. Wang, Y. Zhao, C. Tan, R. He, Ceram. Int. 48(16), 23325–23333 (2022). https://doi.org/10.1016/j.ceramint.2022.04.320

  81. J.L. Qi, J.H. Lin, Y.H. Wan, L.X. Zhang, J. Cao, J.C. Feng, RSC Adv. 4, 64238–64243 (2014). https://doi.org/10.1039/c4ra11110

  82. L.X. Zhang, B. Zhang, Z. Sun, S.Y. Liu, M. Lei, J.C. Feng, Ceram. Int. 46(8), 10224–10232 (2020). https://doi.org/10.1016/j.ceramint.2020.01.014

  83. S. Zhao, H. Chen, X. Nai, P. Wang, H. Deng, G. Wen, F. Liu, W. Li, J. Manuf. Process. 85, 132–140 (2023). https://doi.org/10.1016/j.jmapro.2022.11.045

  84. J. Shin, A. Sharma, D.H. Jung, J.P. Jung, Korean J. Met. Mater. 56(5), 366–374 (2018). https://doi.org/10.3365/KJMM.2018.56.5.366

  85. D.H. Jung, J.P. Jung, J. Korean Inst. Met. Mater. 56(9), 664–673 (2018). https://doi.org/10.3365/KJMM.2018.56.9.664

  86. A. Sharma, D.E. Xu, J.P. Jung, Mater. Res. Express 6, 056526 (2019). https://doi.org/10.1088/2053-1591/ab03e5

  87. A.J. Kinloch, J. Mater. Sci. 15(9), 2141–2166 (1980). https://doi.org/10.1007/BF00552302

  88. M. Way, PhD thesis, University of Sheffield, (2020)

  89. S.J. Hitchcock, N.T. Carroll, M.G. Nicholas, J. Mater. Sci. 16, 714–732 (1981). https://doi.org/10.1007/BF02402789

  90. W. Tillmann, L. Wojarski, T. Ulitzka et al., 12th International Conference, 21st to 23rd May 2019, Aachen, pp. 1–6

  91. D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng, A. Hu, Mater. Lett. 215, 11–14 (2018). https://doi.org/10.1016/j.matlet.2017.12.003

  92. M. Gao, J.W. Yeh, P. Liaw, Y. Zhang, High-entropy alloys: fundamentals and applications (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-27013-5

  93. A. Munitz, M.J. Kaufman, J.P. Chandler, H. Kalaantari, R. Abbaschian, Mater. Sci. Eng. A 560, 633–642 (2013). https://doi.org/10.1016/j.msea.2012.10.007

  94. V. Fedorov, U. Thomas, W. Guntram, Metals 11(2), 217 (2021). https://doi.org/10.3390/met11020217

  95. L. Hardwick, P. Rodgers, E. Pickering, R. Goodall, Metall. Mater. Trans. A 52, 2534–2548 (2021). https://doi.org/10.1007/s11661-021-06246-0

  96. G. Liu, X. Zhang, J. Yang, G. Qiao, J. Adv. Ceram. 8, 19–38 (2019). https://doi.org/10.1007/s40145-018-0297-x

  97. X. Zhou, J. Liu, S. Zou et al., J. Eur. Ceram. Soc. 40(2), 259–266 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.016

  98. P. Wan, M. Li, K. Xu, J. Eur. Ceram. Soc. 39(16), 5457–5462 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.09.002

  99. M. Li, X. Zhou, H. Yang, S. Du, Q. Huang, Scripta Mater. 143, 149–153 (2018). https://doi.org/10.1016/j.scriptamat.2017.03.001

  100. G.W. Liu, M.L. Muolo, F. Valenza, A. Passerone, Ceram. Int. 36(4), 1177–1188 (2010). https://doi.org/10.1016/j.ceramint.2010.01.001

  101. Z.G. Zhu, K.H. Ma, Q. Wang, C.H. Shek, Intermetallics 79, 1–11 (2016). https://doi.org/10.1016/j.intermet.2016.09.003

    Article  CAS  Google Scholar 

  102. Y. Liu, G. Wang, Y. Zhao, M. Wang, R. He, C. Tan, W. Wang, X. Zhou, J. Eur. Ceram. Soc. 42(5), 1995–2003 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.063

  103. H. Yang, X. Zhou, W. Shi et al., J. Eur. Ceram. Soc. 37(4), 1233–1241 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.12.009

  104. A.I. Gabov, A.A. Ivannikov, O.N. Sevryukov, in IOP Conference Series: Materials Science and Engineering, vol. 1005 (2020), p. 012012. https://doi.org/10.1088/1757-899X/1005/1/012012

  105. H. Xu, L. Shi, C. Lu, H. Li et al., Mater. Charact. 179, 111368 (2021). https://doi.org/10.1016/j.matchar.2021.111368

  106. J. Yeon, M. Yamamoto, P. Ni, M. Nakamoto, T. Tanaka, Metals 10, 1377 (2020). https://doi.org/10.3390/met10101377

  107. L.X. Zhang, J.M. Shi, H.W. Li, X.Y. Tian, J.C. Mater. Des. 97, 230–238 (2016). https://doi.org/10.1016/j.matdes.2016.02.055

  108. X.Y. Tian, J.C. Feng, J.M. Shi, H.W. Li, L.X. Zhang, Ceram. Int. 41(1), 145–153 (2015). https://doi.org/10.1016/j.ceramint.2014.08.051

  109. A. Sharma, B. Ahn, Sci. Rep. 11, 9345 (2021). https://doi.org/10.1038/s41598-021-87705-x

  110. G. Wang, Y. Yang, M. Wang, R. He, C. Tan, W. Cao, H.F. Xu, J. Eur. Ceram. Soc. 41(1), 54–61 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.08.050

  111. Y. Yang, G. Wang, R. He, D. Shu, C. Tan, W. Cao, J. Am. Ceram. Soc. 104(7), 2992–3003 (2021). https://doi.org/10.1111/jace.17732

  112. W. Yang, P. He, T. Lin, C. Song, R. Li, D. Jia, Mater. Sci. Eng. A 573, 1–6 (2013). https://doi.org/10.1016/j.msea.2013.02.047

  113. X. Wang, D. Dong, X. Yang, P. Huang, K. Shi, T. Ma, D. Zhu, L. Liu, Crystals 11(5), 472 (2021). https://doi.org/10.3390/cryst11050472

  114. P. He, W. Yang, T. Lin, D. Jia, J. Feng, Y. Liu, J. Eur. Ceram. Soc. 32(16), 4447–4454 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.005

Download references

Acknowledgements

This paper was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE), (P0018010, 2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Pil Jung.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F., Rajendran, S.H. & Jung, J.P. Recent Advances in High Entropy Alloy Fillers for Brazing Similar and Dissimilar Materials: A Review. Met. Mater. Int. 30, 1145–1169 (2024). https://doi.org/10.1007/s12540-023-01582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01582-9

Keywords

Navigation