Skip to main content
Log in

Effect of Mo Additions on the Physical, Mechanical and Corrosion Properties of Commercially Pure Ti Fabricated by Metal Injection Moulding

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ti-Mo alloys have received increasing attention for use in biomedical applications due to their non-toxic alloying elements, reasonable cost and suitable properties. In the present study, the effects of elemental Mo powder additions (5, 7.5, 10 and 15 wt%) on the physical, mechanical and corrosion properties in commercially pure Ti fabricated by metal injection moulding (MIM) and sintered at 1250 and 1350 °C were investigated. It was found that tensile strength increases with increasing Mo content mainly due to solid solution strengthening. However, the strain to failure of the alloys is variable and is influenced by the formation of TiCx, the relative sintered density and by impurities depending on the Mo content and sintering temperature. From the present study the optimum alloy is Ti-7.5Mo, sintered at 1250 °C for 2 h, which offers a satisfactory balance between suitable tensile properties, high relative density (> 96.5%), and excellent corrosion resistance in an artificial saliva environment. Ti-Mo alloys can also tolerate impurities up to 0.5 wt% (Oxygen equivalent, Oeq) without any significant reduction in ductility, which is a practical advantage for manufacturing and is attractive for biomedical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys (ASM international, Almere, 1993)

  2. M. Qian, W. Xu, M. Brandt, H.P. Tang, MRS Bull. 41, 775–784 (2016). https://doi.org/10.1557/mrs.2016.215

    Article  CAS  Google Scholar 

  3. E. Chlebus, B. Kuźnicka, T. Kurzynowski, B. Dybała, Mater. Charact. 62, 488–495 (2011). https://doi.org/10.1016/j.matchar.2011.03.006

    Article  CAS  Google Scholar 

  4. M.-W. Wu, J.-K. Chen, M.-K. Tsai, P. Wang, T.-L. Cheng, B.-H. Lin, P.-H. Chiang, A. Dhinakar, Met. Mater. Int. 28, 132–144 (2022). https://doi.org/10.1007/s12540-021-01021-7

    Article  CAS  Google Scholar 

  5. D. Annur, I. Kartika, S. Supriadi, B. Suharno, Mater. Res. Express 8, 012001 (2021). https://doi.org/10.1088/2053-1591/abd969

    Article  Google Scholar 

  6. B.C. Costa, C.K. Tokuhara, L.A. Rocha, R.C. Oliveira, P.N. Lisboa-Filho, J. Costa Pessoa, Mater Sci. Eng. C 96, 730–739 (2019). https://doi.org/10.1016/j.msec.2018.11.090

    Article  CAS  Google Scholar 

  7. D. Sumner, J. Biomech. 48, 797–800 (2015). https://doi.org/10.1016/j.jbiomech.2014.12.021

    Article  CAS  Google Scholar 

  8. M.I.Z. Ridzwan, S. Shuib, A.Y. Hassan, A.A. Shokri, M.N.M. Ibrahim J. Med. Sci 7, 460–467 (2007). https://doi.org/10.3923/jms.2007.460.467

    Article  Google Scholar 

  9. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54, 397–425 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  10. W. Weng, A. Biesiekierski, Y. Li, C. Wen, Materialia 6, 100323 (2019). https://doi.org/10.1016/j.mtla.2019.100323

    Article  CAS  Google Scholar 

  11. P. Sochacka, A. Miklaszewski, M. Jurczyk, J. Alloys Compd. 776, 370–378 (2019). https://doi.org/10.1016/j.jallcom.2018.10.217

    Article  CAS  Google Scholar 

  12. N. Mavros, T. Larimian, J. Esqivel, R.K. Gupta, R. Contieri, T. Borkar, Mater. Des. 183, 108163 (2019). https://doi.org/10.1016/j.matdes.2019.108163

    Article  CAS  Google Scholar 

  13. J. Luo, J. Sun, Y. Huang, J. Zhang, Y. Zhang, D. Zhao, M. Yan, Mater. Sci. Eng. C 97, 275–284 (2019). https://doi.org/10.1016/j.msec.2018.11.077

    Article  CAS  Google Scholar 

  14. C. Suwanpreecha, E. Alabort, Y.T. Tang, C. Panwisawas, R.C. Reed, A. Manonukul, Mater. Sci. Eng. A 812, 141081 (2021). https://doi.org/10.1016/j.msea.2021.141081

    Article  CAS  Google Scholar 

  15. M. Niinomi, Metall. Mater. Trans. A 33, 477–486 (2002). https://doi.org/10.1007/s11661-002-0109-2

    Article  Google Scholar 

  16. M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8, 3888–3903 (2012). https://doi.org/10.1016/j.actbio.2012.06.037

    Article  CAS  Google Scholar 

  17. P. Xu, F. Pyczak, M. Yan, W. Limberg, R. Willumeit-Römer, T. Ebel, Appl. Mater. Today 19, 100630 (2020). https://doi.org/10.1016/j.apmt.2020.100630

    Article  Google Scholar 

  18. K.-K. Wong, H.-C. Hsu, S.-C. Wu, W.-F. Ho, Met. Mater. Int. 28, 2563–2570 (2022). https://doi.org/10.1007/s12540-021-01122-3

    Article  CAS  Google Scholar 

  19. M.J. Shivaram, S.B. Arya, J. Nayak, B.B. Panigrahi, Met. Mater. Int. 28, 722–732 (2022). https://doi.org/10.1007/s12540-020-00915-2

    Article  CAS  Google Scholar 

  20. J. Disegi, Wrought Titanium-15% Molybdenum Implant Material, SYNTHES® Instruments and Implants, 2nd edn. (2009)

  21. P.J. Bania, Jom 46, 16–19 (1994). https://doi.org/10.1007/BF03220742

    Article  CAS  Google Scholar 

  22. M. Shahedi Asl, S.A. Delbari, M. Azadbeh, A. Sabahi Namini, M. Mehrabian, V.-H. Nguyen, Q.V. Le, M. Shokouhimehr, M. Mohammadi, J. Mater. Res. Technol. 9, 10647–10658 (2020). https://doi.org/10.1016/j.jmrt.2020.07.066

    Article  CAS  Google Scholar 

  23. P. Mohan, D.K. Rajak, C.I. Pruncu, A. Behera, V. Amigó-Borrás, A.B. Elshalakany, Micron 142, 102992 (2021). https://doi.org/10.1016/j.micron.2020.102992

    Article  CAS  Google Scholar 

  24. W. Xu, X. Lu, L.N. Wang, Z.M. Shi, S.M. Lv, M. Qian, X.H. Qu, J. Mech. Behav. Biomed. Mater. 88, 534–547 (2018). https://doi.org/10.1016/j.jmbbm.2018.08.038

    Article  CAS  Google Scholar 

  25. W.F. Ho, C.P. Ju, J.H. Chern Lin, Biomaterials 20, 2115–2122 (1999). https://doi.org/10.1016/S0142-9612(99)00114-3

    Google Scholar 

  26. A. Almeida, D. Gupta, C. Loable, R. Vilar, Mater. Sci. Eng. C 32, 1190–1195 (2012). https://doi.org/10.1016/j.msec.2012.03.007

    Article  CAS  Google Scholar 

  27. F.F. Cardoso, P.L. Ferrandini, E.S.N. Lopes, A. Cremasco, R. Caram, J. Mech. Behav. Biomed. Mater. 32, 31–38 (2014). https://doi.org/10.1016/j.jmbbm.2013.11.021

    Article  CAS  Google Scholar 

  28. Y.-L. Zhou, D.-M. Luo, Mater. Charact. 62, 931–937 (2011). https://doi.org/10.1016/j.matchar.2011.07.010

    Article  CAS  Google Scholar 

  29. Y.-Y. Chen, L.-J. Xu, Z.-G. Liu, F.-T. Kong, Z.-Y. Chen, Trans. Nonferrous Met. Soc. China 16, s824–s828 (2006). https://doi.org/10.1016/S1003-6326(06)60308-7

    Article  Google Scholar 

  30. T. Ebel, in Titanium in Medical and Dental Applications, ed. by F.H. Froes, Ma Qian (Woodhead Publishing, Cambridge, 2018), pp. 531–551. https://doi.org/10.1016/B978-0-12-812456-7.00024-X

  31. T. Ebel, in Handbook of Metal Injection Molding, ed.by D.F. Heaney (Woodhead Publishing, Cambridge, 2012), pp. 415–445. https://doi.org/10.1533/9780857096234.4.415

  32. W. Limberg, T. Ebel, F. Pyczak, M. Oehring, F.P. Schimansky, Mater. Sci. Eng. A 552, 323–329 (2012). https://doi.org/10.1016/j.msea.2012.05.047

    Article  CAS  Google Scholar 

  33. C. Suwanpreecha, A. Manonukul, SIAM Sci. Innov. Adv. Mater. 1, 64005 (2021). https://ph02.tci-thaijo.org/index.php/SIAM/article/view/243974

    Google Scholar 

  34. G.C. Obasi, O.M. Ferri, T. Ebel, R. Bormann, Mater. Sci. Eng. A 527, 3929–3935 (2010). https://doi.org/10.1016/j.msea.2010.02.070

    Article  CAS  Google Scholar 

  35. F. Kafkas, T. Ebel, J. Alloys Compd. 617, 359–366 (2014). https://doi.org/10.1016/j.jallcom.2014.07.168

    Article  CAS  Google Scholar 

  36. P. Xu, F. Pyczak, W. Limberg, R. Willumeit-Römer, T. Ebel, Mater. Des. 211, 110141 (2021). https://doi.org/10.1016/j.matdes.2021.110141

    Article  CAS  Google Scholar 

  37. P. Imgrund, A. Rota, H. Schmidt, G. Capretti, Met. Powder Rep. 63, 21–24 (2008). https://doi.org/10.1016/S0026-0657(08)70057-2

    Article  Google Scholar 

  38. A. Dehghan-Manshadi, P. Yu, M. Dargusch, D. StJohn, M. Qian, Powder Technol. 364, 189–204 (2020). https://doi.org/10.1016/j.powtec.2020.01.073

    Article  CAS  Google Scholar 

  39. J. Takekawa, N. Sakurai, Jpn. Soc. Powder Powder Metall. 46, 877–881 (1999). https://doi.org/10.2497/jjspm.46.877

    Article  CAS  Google Scholar 

  40. N. Sakurai, J. Takekawa, J. Jpn. Soc. Powder Powder Metall. 47, 653–657 (2000). https://doi.org/10.2497/jjspm.47.653

    Article  CAS  Google Scholar 

  41. M. Yan, M. Qian, C. Kong, M.S. Dargusch, Acta Biomater. 10, 1014–1023 (2014). https://doi.org/10.1016/j.actbio.2013.10.034

    Article  CAS  Google Scholar 

  42. D.-P. Zhao, T. Ebel, M. Yan, M. Qian, Jom 67, 2236–2243 (2015). https://doi.org/10.1007/s11837-015-1590-6

    Article  CAS  Google Scholar 

  43. D. Mareci, R. Chelariu, D. Gordin, M. Romas, D. Sutiman, T. Gloriant, Mater. Corros. 61, 829–837 (2010). https://doi.org/10.1002/maco.201005761

    Article  CAS  Google Scholar 

  44. D. Mareci, R. Chelariu, I. Dan, D.-M. Gordin, T. Gloriant, J Mater Sci Mater Med 21, 2907–2913 (2010). https://doi.org/10.1007/s10856-010-4147-9

    Article  CAS  Google Scholar 

  45. E.-B. Lee, M.-K. Han, B.-J. Kim, H.-J. Song, Y.-J. Park, Int. J. Mater. Res. 105, 847–853 (2014). https://doi.org/10.3139/146.111092

    Article  CAS  Google Scholar 

  46. H. Conrad, Prog. Mater. Sci. 26, 123–403 (1981). https://doi.org/10.1016/0079-6425(81)90001-3

    Article  CAS  Google Scholar 

  47. L. Backman, J. Gild, J. Luo, E.J. Opila, Acta Mater. 197, 20–27 (2020). https://doi.org/10.1016/j.actamat.2020.07.003

    Article  CAS  Google Scholar 

  48. I.J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th edn. (Butterworth-Heinemann, Oxford, 2005)

  49. Y. Liu, W.-F. Wei, K.-C. Zhou, L.-F. Chen, H.-P. Tang, J. Cent, South Univ. Technol. 10, 81–86 (2003). https://doi.org/10.1007/s11771-003-0043-5

    Article  CAS  Google Scholar 

  50. W. Few, G. Manning, Jom 4, 271–274 (1952). https://doi.org/10.1007/BF03397689

    Article  CAS  Google Scholar 

  51. C. Hammond, J. Nutting, Met. Sci. 11, 474–490 (1977). https://doi.org/10.1179/msc.1977.11.10.474

    Article  CAS  Google Scholar 

  52. L.-Y. Chen, Y.-W. Cui, L.-C. Zhang, Metals 10, 1139 (2020). https://doi.org/10.3390/met10091139

    Article  CAS  Google Scholar 

  53. P. Bocchetta, L.-Y. Chen, J.D.C. Tardelli, A.C.D. Reis, F. Almeraya-Calderón, P. Leo, Coatings 11, 487 (2021). https://doi.org/10.3390/coatings11050487

    Article  CAS  Google Scholar 

  54. Y.-L. Zhou, D.-M. Luo, J. Alloys Compd. 509, 6267–6272 (2011). https://doi.org/10.1016/j.jallcom.2011.03.045

    Article  CAS  Google Scholar 

  55. J. Xu, S. Tao, L. Bao, J. Luo, Y. Zheng, Mater. Sci. Eng. C 97, 156–165 (2019). https://doi.org/10.1016/j.msec.2018.12.028

    Article  CAS  Google Scholar 

  56. B.-S. Sung, T.-E. Park, Y.-H. Yun, Adv. Mater. Sci. Eng. 2015, 872730 (2015). https://doi.org/10.1155/2015/872730

    Article  Google Scholar 

  57. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, F. Pyczak, J. Mech. Behav. Biomed. Mater. 28, 171–182 (2013). https://doi.org/10.1016/j.jmbbm.2013.08.013

    Article  CAS  Google Scholar 

  58. D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, F. Pyczak, Powder Metall. 57, 2–4 (2014). https://doi.org/10.1179/0032589914Z.000000000153

    Article  CAS  Google Scholar 

  59. J.-E. Bidaux, C. Closuit, M. Rodriguez-Arbaizar, D. Zufferey, E. Carreño-Morelli, Powder Inject. Mould. Int. 6, 70–73 (2012)

    Google Scholar 

  60. H. Miura, T. Osada, Y. Itoh, in Advances in Metallic Biomaterials: Processing and Applications, ed. by M. Niinomi, T. Narushima, M. Nakai (Springer Berlin, Heidelberg, 2015), pp. 27–56. https://doi.org/10.1007/978-3-662-46842-5_2

Download references

Acknowledgements

This work is financially supported by Taisei Kogyo (Thailand) Co., Ltd. and National Metal and Materials Technology Center (MTEC), Thailand, (Grant No. P2150585). The authors sincerely thank Mr. P. Newyawong and Mr. N. Wongpanya, Microscopy Laboratory, NSTDA Characterization and Testing Service Center, National Sciences and Technology Development Agency (NSTDA), Thailand and Mr. S. Linjee, MTEC, for EBSD preparation and analysis, Ms. Y. Pankaew and Ms. T. Panthung for specimen preparation and setting up of corrosion testing. The authors gratefully acknowledge Dr. Y. Tantilertanant and Mr. K. Engkatanchai, Department of Operative Dentistry and Assoc. Prof. Dr. J. Sucharitakul, Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Thailand for the preparation of an artificial saliva solution, and Dr. J.T.H. Pearce, Department of Industrial Chemistry, Chiang Mai University, Thailand for valuable discussions and proofreading. The authors also acknowledge Prof. K. Kondoh, Osaka University, Japan for the impurities analysis.

Author information

Authors and Affiliations

Authors

Contributions

Part related to MIM: CS: Conceptualisation, Methodology, Investigation, Visualisation, Writing original draft, Writing—review and editing. SS: Methodology, Investigation. MT: Conceptualisation, methodology, resources. AM: Conceptualisation, Resources, Writing—review & editing, Supervision, Project administration, Funding acquisition. Part related to corrosion: PW: Methodology, Investigation. PP: Conceptualisation, Resources, Writing original draft.

Corresponding authors

Correspondence to Wanida Pongsaksawad or Anchalee Manonukul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwanpreecha, C., Songkuea, S., Wangjina, P. et al. Effect of Mo Additions on the Physical, Mechanical and Corrosion Properties of Commercially Pure Ti Fabricated by Metal Injection Moulding. Met. Mater. Int. 29, 3298–3316 (2023). https://doi.org/10.1007/s12540-023-01454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01454-2

Keywords

Navigation