Skip to main content
Log in

Influence of In-Plane Simple Shear Strain on the Grain Orientation Regulation and Stretch Formability of Pre-twinned AZ31 Magnesium Alloy Sheet

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Pre-twin is widely accepted as an efficient method for weakening the basal texture to improve the plasticity of magnesium alloys, particularly for formability. However, the enhancement is limited since the largest Schmid factor (SF) of basal slip cannot be achieved. In-plane simple shear strain is used to control the twin orientation in accordance with Schmid law to further decrease the basal texture and improve the formability of the Mg alloys sheet. Consequently, secondary regulation of initial twin orientation (SRITO) technology, a novel combination procedure, was developed. In this method, the AZ31 Mg alloys sheet is compressed to pre-twins with various volumes (1%, 3%, and 5%), then the twin orientation is regulated by in-plane simple shear strain for the second time. Compared with the as-received sample, the average fracture elongation of the annealed sample with the best properties improves from 15.3 to 28.8%, and the Erichsen value increases from 2.8 to 6.1 mm due to the regulation of twin orientation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. J. Kim, H. Liao, X. Ou, Z. Zhang, K. Kang, T. Lee, F. Pan, Met. Mater. Int. 28(11), 2613–2620 (2022). https://doi.org/10.1007/s12540-022-01176-x

  2. J. Chen, R. Sun, G. Li, M. Fang, G. Xu, M. Zhang, J. Li, Met. Mater. Int. 28(11), 2677–2690 (2022). https://doi.org/10.1007/s12540-021-01158-5

    Article  CAS  Google Scholar 

  3. Q. Ran, H. Yan, J. He, N. Li, Y. Lei, Met. Mater. Int. 28(8), 2012–2022 (2021). https://doi.org/10.1007/s12540-021-01095-3

    Article  CAS  Google Scholar 

  4. A.H. Eftekhar, S.M. Sadrossadat, M. Reihanian, Met. Mater. Int. 28(5), 1062–1074 (2021). https://doi.org/10.1007/s12540-021-00984-x

    Article  CAS  Google Scholar 

  5. H. Abedi, M. Emamy, J. Rassizadehghani, H. Mirzadeh, Met. Mater. Int. 28(5), 1105–1113 (2021). https://doi.org/10.1007/s12540-021-01065-9

    Article  CAS  Google Scholar 

  6. N. Li, L. Yang, C. Wang, M.A. Monclús, D. Shi, J.M. Molina-Aldareguía, Mater. Sci. Eng. A 819, 141408 (2021). https://doi.org/10.1016/j.msea.2021.141408

    Article  CAS  Google Scholar 

  7. X. Huang, K. Suzuki, N. Saito, Mater. Sci. Eng. A 508(1–2), 226–233 (2009). https://doi.org/10.1016/j.msea.2008.12.052

    Article  CAS  Google Scholar 

  8. F. Liu, X. Liu, B. Zhu, H. Yang, G. Xiao, M. Hu, Met. Mater. Int. 28(6), 1361–1371 (2021). https://doi.org/10.1007/s12540-021-00996-7

    Article  CAS  Google Scholar 

  9. F. Zhao, T. Suo, B. Chen, Y.L. Li, J. Alloys Compd. 798, 350–359 (2019). https://doi.org/10.1016/j.jallcom.2019.05.260

    Article  CAS  Google Scholar 

  10. N. Fakhar, M. Sabbaghian, J. Alloys Compd. 862, 158334 (2021). https://doi.org/10.1016/j.jallcom.2020.158334

  11. L. Gao, F. Li, Y. Wang, X.M. Xiao, P. Da Huo, Met. Mater. Int. 28(8), 1960–1970 (2021). https://doi.org/10.1007/s12540-021-01077-5

    Article  CAS  Google Scholar 

  12. Q. Liao, W. Hu, Q. Le, X. Chen, Y. Jiang, Met. Mater. Int. 28(5), 1143–1156 (2021). https://doi.org/10.1007/s12540-021-00978-9

    Article  CAS  Google Scholar 

  13. S.K. Dewangan, M.K. Tripathi, M.K. Manoj, Met. Mater. Int. 28(5), 1169–1183 (2021). https://doi.org/10.1007/s12540-021-00980-1

    Article  CAS  Google Scholar 

  14. X. Xu, Y. Deng, X. Guo, Q. Pan, Met. Mater. Int. 28(7), 1620–1629 (2021). https://doi.org/10.1007/s12540-021-01050-2

    Article  CAS  Google Scholar 

  15. L.L.C. Catorceno, H.F.G. de Abreu, A.F. Padilha, J. Magnes. Alloys 6(2), 121–133 (2018). https://doi.org/10.1016/j.jma.2018.04.004

    Article  CAS  Google Scholar 

  16. Q. Sun, T. Xia, L. Tan, J. Tu, M. Zhang, M. Zhu, X. Zhang, Mater. Sci. Eng. A 735, 243–249 (2018). https://doi.org/10.1016/j.msea.2018.08.051

    Article  CAS  Google Scholar 

  17. W. He, Q. Zeng, H. Yu, Y. Xin, B. Luan, Q. Liu, Mater. Sci. Eng. A 655, 1–8 (2016). https://doi.org/10.1016/j.msea.2015.12.070

    Article  CAS  Google Scholar 

  18. H. Pan, F. Wang, M. Feng, L. Jin, J. Dong, P. Wu, Mater. Sci. Eng. A 712, 585–591 (2018). https://doi.org/10.1016/j.msea.2017.11.123

    Article  CAS  Google Scholar 

  19. S. Bouvier, H. Haddadi, P. Levée, C. Teodosiu, J. Mater. Process. Tech. 172(1), 96–103 (2006). https://doi.org/10.1016/j.jmatprotec.2005.09.003

  20. J.-Y. Kang, B. Bacroix, R. Brenner, Scr. Mater. 66(9), 654–657 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.040

    Article  CAS  Google Scholar 

  21. H. Zhang, G. Huang, L. Wang, H.J. Roven, Z. Xu, F. Pan, Scr. Mater. 69(1), 49–52 (2013). https://doi.org/10.1016/j.scriptamat.2013.03.011

    Article  CAS  Google Scholar 

  22. P. Yang, Scr. Mater. 50(8), 1163–1168 (2004). https://doi.org/10.1016/j.scriptamat.2004.01.013

    Article  CAS  Google Scholar 

  23. M.D. Nave, M.R. Barnett, Scr. Mater. 51(9), 881–885 (2004). https://doi.org/10.1016/j.scriptamat.2004.07.002

    Article  CAS  Google Scholar 

  24. A. Jain, S.R. Agnew, Mater. Sci. Eng. A 462(1–2), 29–36 (2007). https://doi.org/10.1016/j.msea.2006.03.160

    Article  CAS  Google Scholar 

  25. S.-G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58(18), 5873–5885 (2010). https://doi.org/10.1016/j.actamat.2010.07.002

    Article  CAS  Google Scholar 

  26. B. Song, N. Guo, T. Liu, Q. Yang, Mater. Des. 62, 352–360 (2014). https://doi.org/10.1016/j.matdes.2014.05.034

    Article  CAS  Google Scholar 

  27. Y. Xin, H. Zhou, H. Yu, R. Hong, H. Zhang, Q. Liu, Mater. Sci. Eng. A 622, 178–183 (2015). https://doi.org/10.1016/j.msea.2014.11.027

    Article  CAS  Google Scholar 

  28. S.-J. Kim, D. Kim, K. Lee, H.-H. Cho, H.N. Han, Mater. Charact. 109, 88–94 (2015). https://doi.org/10.1016/j.matchar.2015.09.007

    Article  CAS  Google Scholar 

  29. W. Cheng, L. Wang, H. Zhang, X. Cao, J. Mater. Process. Tech. 254, 302–309 (2018). https://doi.org/10.1016/j.jmatprotec.2017.11.052

    Article  CAS  Google Scholar 

  30. Y.J. Kim, J.U. Lee, Y.M. Kim, S.H. Park, J. Magnes. Alloys 9(4), 1233–1245 (2021). https://doi.org/10.1016/j.jma.2020.11.015

    Article  CAS  Google Scholar 

  31. Y. Xin, H. Zhou, G. Wu, H. Yu, A. Chapuis, Q. Liu, Mater. Sci. Eng. A 639, 534–539 (2015). https://doi.org/10.1016/j.msea.2015.05.070

    Article  CAS  Google Scholar 

  32. H. Zhang, C. Yan, C. Li, Y. Xin, Q. Liu, J. Alloys Compd. 696, 428–434 (2017). https://doi.org/10.1016/j.jallcom.2016.11.315

    Article  CAS  Google Scholar 

  33. X. Huang, K. Suzuki, N. Saito, Scr. Mater. 60(8), 651–654 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.035

    Article  CAS  Google Scholar 

  34. Y. Xin, M. Wang, Z. Zeng, M. Nie, Q. Liu, Scr. Mater. 66(1), 25–28 (2012). https://doi.org/10.1016/j.scriptamat.2011.09.033

    Article  CAS  Google Scholar 

  35. J.A. del Valle, F. Carreño, O.A. Ruano, Acta Mater. 54(16), 4247–4259 (2006). https://doi.org/10.1016/j.actamat.2006.05.018

    Article  CAS  Google Scholar 

  36. D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kim, N.J. Kim, Scr. Mater. 61(7), 768–771 (2009). https://doi.org/10.1016/j.scriptamat.2009.06.026

    Article  CAS  Google Scholar 

  37. S. Yi, J. Bohlen, F. Heinemann, D. Letzig, Acta Mater. 58(2), 592–605 (2010). https://doi.org/10.1016/j.actamat.2009.09.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Central Government Guided Local Science and Technology development projects (YDZJSX2021A010), China Postdoctoral Science Foundation (2022M710541), National Natural Science Foundation of China (51704209, 52274397), Projects of International Cooperation in Shanxi (201803D421086, 201903D421076), Shanxi Province patent promotion implementation fund (20200718), Research Project Supported by Shanxi Scholarship Council of China (2022-038), Taishan Scholars Project Special Fund (2021), the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant (No. 075-15-2022-1133) and the National Research Foundation (NRF) grant funded by the Ministry of Science and ICT (2015R1A2A1A01006795) of Korea through the Research Institute of Advanced Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Wang, L., Lu, P. et al. Influence of In-Plane Simple Shear Strain on the Grain Orientation Regulation and Stretch Formability of Pre-twinned AZ31 Magnesium Alloy Sheet. Met. Mater. Int. 29, 2965–2977 (2023). https://doi.org/10.1007/s12540-023-01434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01434-6

Keywords

Navigation