Skip to main content
Log in

Influence of Substrate Roughness and Ceramic Content on Deposition Characteristics of Cold-Sprayed Ti/TiO2 Deposits

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Deposition of coatings on a cheaper substrate material is an economical, versatile, and effective way to enhance its surface properties and performance for the given application. Cold spray, a relatively new technology, has several advantages over other surface coating processes, including no phase change because of its low processing temperature. This work discusses the effects of substrate surface roughness and ceramic (TiO2) content in Ti-based feedstock powder on the coatings' deposition behavior. The results revealed that polishing the substrate to mirror-finish can be a better option for attaining good adhesion between the coatings and the substrate. Also, as the ceramic content increases in the feedstock, the deposition efficiency of the coatings affects severely and leads to poor mechanical properties. Finally, Ti/TiO2 composite coatings have successfully been deposited and tested for corrosion and wear behavior. Cold sprayed Ti/20%TiO2 composite coating is found to be successful in protecting the steel substrate from corrosion and wear.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater Sci. 54, 397 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  2. D. Singh, R. Singh, K.S. Boparai, I. Farina, L. Feo, A.K. Verma, Compos. B Eng. 132, 107 (2018). https://doi.org/10.1016/j.compositesb.2017.08.019

    Article  CAS  Google Scholar 

  3. M. Kaur, K. Singh, Mater. Sci. Eng. C 102, 844 (2019). https://doi.org/10.1016/j.msec.2019.04.064

    Article  CAS  Google Scholar 

  4. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, E. Mahé, Mater. Sci. Eng. B 47, 235 (1997). https://doi.org/10.1016/S0921-5107(97)00043-3

    Article  Google Scholar 

  5. T.J. Webster, R.W. Siegel, R. Bizios, Biomaterials 20, 1221 (1999). https://doi.org/10.1016/S0142-9612(99)00020-4

    Article  CAS  Google Scholar 

  6. U. Diebold, Surf. Sci. Rep. 48, 53 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0.

  7. K.A. Nazari, A. Nouri, T. Hilditch, Mater. Des. 88, 1164 (2015). https://doi.org/10.1016/j.matdes.2015.09.106

    Article  CAS  Google Scholar 

  8. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014). https://doi.org/10.1007/s11665-014-0958-z

    Article  CAS  Google Scholar 

  9. A. Kumar, R. Kant, H. Singh, J. Mater. Res. 37, 2698 (2022). https://doi.org/10.1557/s43578-022-00675-2

    Article  Google Scholar 

  10. D.Q. Pham, C.C. Berndt, U. Gbureck, H. Zreiqat, V.K. Truong, A.S.M. Ang, Surf. Coat. Tech. 378, 124945 (2019). https://doi.org/10.1016/j.surfcoat.2019.124945

    Article  CAS  Google Scholar 

  11. S. Amin, H. Panchal, A review on thermal spray coating processes. IJCTER 2, 556 (2016)

    Google Scholar 

  12. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. Fomin, Cold Spray Technology, 1st edn. (Elsevier Science, Amsterdam, 2006)

  13. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Mater. 51, 4379 (2003). https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  CAS  Google Scholar 

  14. H. Assadi, F. Gärtner, T. Klassen, H. Kreye, Scripta Mater. 162, 512 (2019). https://doi.org/10.1016/j.scriptamat.2018.10.036

    Article  CAS  Google Scholar 

  15. K.H. Ko, J.O. Choi, H. Lee, Mater. Lett. 175, 13 (2016). https://doi.org/10.1016/j.matlet.2016.03.132

    Article  CAS  Google Scholar 

  16. G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater. 56, 4858 (2008). https://doi.org/10.1016/j.actamat.2008.06.003

    Article  CAS  Google Scholar 

  17. G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.J. Kim, C. Lee, Acta Mater. 57, 5654 (2009). https://doi.org/10.1016/j.actamat.2009.07.061

    Article  CAS  Google Scholar 

  18. L. Zhu, T.C. Jen, Y.T. Pan, H.S. Chen, J. Therm. Spray Techn. 26, 1859 (2017). https://doi.org/10.1007/s11666-017-0652-4

    Article  CAS  Google Scholar 

  19. M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, C.A. Schuh, Acta Mater. 158, 430 (2018). https://doi.org/10.1016/j.actamat.2018.07.065

    Article  CAS  Google Scholar 

  20. D. Goldbaum, R.R. Chromik, S. Yue, E. Irissou, J.G. Legoux, J. Therm. Spray Techn. 20, 486 (2011). https://doi.org/10.1007/s11666-010-9546-4

    Article  CAS  Google Scholar 

  21. S. Singh, H. Singh, S. Chaudhary, R.K. Buddu, Surf. Coat. Tech. 389, 125619 (2020). https://doi.org/10.1016/j.surfcoat.2020.125619

    Article  CAS  Google Scholar 

  22. S. Kumar, G. Bae, C. Lee, Surf. Coat. Tech. 304, 592 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.082

    Article  CAS  Google Scholar 

  23. M.M. Sharma, T.J. Eden, B.T. Golesich, J. Therm. Spray Techn. 24, 410 (2015). https://doi.org/10.1007/s11666-014-0175-1

    Article  CAS  Google Scholar 

  24. T. Hussain, D.G. Mccartney, P.H. Shipway, D. Zhang, J. Therm. Spray Techn. 18, 364 (2009). https://doi.org/10.1007/s11666-009-9298-1

    Article  Google Scholar 

  25. S. Singh, H. Singh, R.K. Buddu, Surf. Eng. 36, 1067 (2020). https://doi.org/10.1080/02670844.2019.1698163

    Article  CAS  Google Scholar 

  26. S. Kumar, G. Bae, C. Lee, Appl. Surf. Sci. 255, 3472 (2009). https://doi.org/10.1016/j.apsusc.2008.10.060

    Article  CAS  Google Scholar 

  27. P. Richer, B. Jodoin, L. Ajdelsztajn, E.J. Lavernia, J. Therm. Spray Techn. 15, 246 (2006). https://doi.org/10.1361/105996306X108174

    Article  CAS  Google Scholar 

  28. E. Irissou, J.G. Legoux, B. Arsenault, C. Moreau, J. Therm. Spray Techn. 16, 661 (2007). https://doi.org/10.1007/s11666-007-9086-8

    Article  CAS  Google Scholar 

  29. W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C. Coddet, Appl. Surf. Sci. 253, 7124 (2007). https://doi.org/10.1016/j.apsusc.2007.02.142

    Article  CAS  Google Scholar 

  30. A. Kumar, D.K. Goyal, R. Kant, H. Singh, Coatings 12, 1010 (2022). https://doi.org/10.3390/coatings12071010

    Article  Google Scholar 

  31. A. Kumar, R. Kant, H. Singh, Surf. Coat. Tech. 425, 127727 (2021). https://doi.org/10.1016/j.surfcoat.2021.127727

    Article  CAS  Google Scholar 

  32. A. Kumar, H. Singh, R. Kant, N. Rasool, J. Therm. Spray Techn. 30, 2099 (2021). https://doi.org/10.1007/s11666-021-01269-w

    Article  Google Scholar 

  33. H.R. Wang, B.R. Hou, J. Wang, Q. Wang, W.Y. Li, J. Therm. Spray Techn. 17, 736 (2008). https://doi.org/10.1007/s11666-008-9256-3

    Article  CAS  Google Scholar 

  34. G. Zeng, S.H. Zahiri, S. Gulizia, Y. Chen, X.-B. Chen, I. Cole, J. Mater. Res. 36, 3679 (2021). https://doi.org/10.1557/s43578-021-00190-w

    Article  CAS  Google Scholar 

  35. D. Boruah, B. Ahmad, T.L. Lee, S. Kabra, A.K. Syed, P. McNutt, M. Doré, X. Zhang, Surf. Coat. Tech. 374, 591 (2019). https://doi.org/10.1016/j.surfcoat.2019.06.028

    Article  CAS  Google Scholar 

  36. S. Yin, X. Suo, J. Su, Z. Guo, H. Liao, X. Wang, J. Therm. Spray Techn. 23, 76 (2014). https://doi.org/10.1007/s11666-013-0039-0

    Article  CAS  Google Scholar 

  37. A.W.Y. Tan, W. Sun, A. Bhowmik, J.Y. Lek, X. Song, W. Zhai, H. Zheng, F. Li, I. Marinescu, Z. Dong, E. Liu, J. Therm. Spray Techn. 28, 1959 (2019). https://doi.org/10.1007/s11666-019-00926-5

    Article  CAS  Google Scholar 

  38. ASTM E3-11, Standard Guide for Preparation of Metallographic Specimens (ASTM International, West Conshohocken, 2012)

    Article  Google Scholar 

  39. ASTM C633-13, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings (ASTM International, West Conshohocken, 2001)

    Article  Google Scholar 

  40. S. Kataria, N. Kumar, S. Dash, R. Ramaseshan, A.K. Tyagi, Surf. Coat. Tech. 205, 922 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.060

    Article  CAS  Google Scholar 

  41. W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.G. Legoux, S. Yue, J. Therm. Spray Techn. 22, 1140 (2013). https://doi.org/10.1007/s11666-013-9951-6

    Article  CAS  Google Scholar 

  42. Q. Wang, K. Spencer, N. Birbilis, M.X. Zhang, Surf. Coat. Tech. 205, 50 (2010). https://doi.org/10.1016/j.surfcoat.2010.06.008

    Article  CAS  Google Scholar 

  43. A. Sabard, P. McNutt, H. Begg, T. Hussain, Surf. Coat. Tech. 385, 125367 (2020). https://doi.org/10.1016/j.surfcoat.2020.125367

    Article  CAS  Google Scholar 

  44. Z. Zhang, F. Liu, E.H. Han, L. Xu, P.C. Uzoma, Surf. Coat. Tech. 370, 53 (2019). https://doi.org/10.1016/j.surfcoat.2019.04.082

    Article  CAS  Google Scholar 

  45. C.J. Li, W.Y. Li, Surf. Coat. Tech. 167, 278 (2003). https://doi.org/10.1016/S0257-8972(02)00919-2

    Article  CAS  Google Scholar 

  46. K.G. Neoh, X. Hu, D. Zheng, E.T. Kang, Biomaterials 33, 2813 (2012)

    Article  CAS  Google Scholar 

  47. X. Zhou, P. Mohanty, Electrochim. Acta 65, 134 (2012). https://doi.org/10.1016/j.electacta.2012.01.018

    Article  CAS  Google Scholar 

  48. N. Padhy, U.K. Mudali, V. Chawla, R. Chandra, B. Raj, Mater. Chem. Phys. 130, 962 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.016

    Article  CAS  Google Scholar 

  49. W. Wong, A. Rezaeian, E. Irissou, J.G. Legoux, S. Yue, Adv. Mater. Res. 89–91, 639 (2010). https://doi.org/10.4028/www.scientific.net/AMR.89-91.639

    Article  CAS  Google Scholar 

  50. J.F. Archard, J. Appl. Phys. 24, 981 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  51. E.-S. Yoon, R.A. Singh, H.-J. Oh, H. Kong, Wear 259, 1424 (2005). https://doi.org/10.1016/j.wear.2005.01.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The cold spray system used for this study was established through MHRD-DST funded Uchhatar Avishkar Yojana (UAY, IITRPR_001). The authors would also like to thank the Department of Science and Technology (DST-FIST, SR/FST/ETI379/2014) India for the financial support, which helped in accessing the SEM and EDS facility to carry out this work. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, H. & Kant, R. Influence of Substrate Roughness and Ceramic Content on Deposition Characteristics of Cold-Sprayed Ti/TiO2 Deposits. Met. Mater. Int. 29, 1669–1683 (2023). https://doi.org/10.1007/s12540-022-01323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01323-4

Keywords

Navigation