Skip to main content
Log in

Ultrafast Sinter Bonding Between Cu Finishes Under Moderate Compression Using In Situ Derived Ag Formed via Low-Temperature Decomposition of Ag2O in the Bonding Paste

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To accomplish rapid chip attachment and produce a bondline between Cu finishes that provides both high-temperature thermo-mechanical reliability and superior thermal conductance, compression-assisted sinter bonding at 300 ℃ was performed in air through the in situ formation of active Ag atoms by the decomposition of 200 nm Ag2O during a redox reaction in the bonding paste. The remarkable sinterability of the generated Ag atoms and the effect of the reducing agent, which was added to the paste to remove the oxide layer on the Cu finish, induced extremely rapid sinter bonding between Cu finishes. Accordingly, the bonding under compression of 2 and 5 MPa resulted in a sufficient shear strength exceeding 27.0 MPa with a dense bondline microstructure even after a significantly short bonding time of 30 s. Transmission electron microscopy revealed that the bonding between the bondline and Cu finish was accomplished through the overlapping of Ag and Cu lattices by inter-diffusion of Ag and Cu atoms without the formation of any compound. Therefore, high-speed chip attachment was successfully achieved even for low-cost Cu finishes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010)

    Article  CAS  Google Scholar 

  2. H. Zhang, C. Chen, J. Jiu, S. Nagao, K. Suganuma, J. Mater. Sci. Mater. Electron. 29, 8854 (2018)

    Article  CAS  Google Scholar 

  3. D. Kim, C. Chen, S. Noh, S.-J. Lee, Z. Zhang, Y. Kimoto, T. Sugahara. K. Suganuma, Microelectron. Reliab. 100–101, 113380 (2019)

  4. W.S. Hong, M.S. Kim, C. Oh, Y. Joo, Y. Kim, K.-K. Hong, JOM 72, 889 (2020)

    Article  CAS  Google Scholar 

  5. T.F. Chen, K.S. Siow, J. Alloys Compd. 866, 158783 (2021)

    Article  CAS  Google Scholar 

  6. S. Zhang, Q. Wang, T. Lin, P. Zhang, P. He, K.-W. Paik, J. Manuf. Process 62, 546 (2021)

    Article  Google Scholar 

  7. E.B. Choi, J.-H. Lee, Met. Mater. Int. 27, 5278 (2021)

    Article  CAS  Google Scholar 

  8. D. Namgoong, K.S. Siow, J.-H. Lee, Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01224-6

    Article  Google Scholar 

  9. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)

    Article  CAS  Google Scholar 

  10. J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Scr. Mater. 66, 582 (2012)

    Article  CAS  Google Scholar 

  11. T. Morita, Y. Yasuda, E. Ide, Y. Akada, A. Hirose, Mater. Trans. 49, 2875 (2008)

    Article  CAS  Google Scholar 

  12. S. Takata, T. Ogura, E. Ide, T. Morita, A. Hirose, J. Electron. Mater. 42, 507 (2013)

    Article  CAS  Google Scholar 

  13. T. Ogura, T. Yagishita, S. Takata, T. Fujimoto, A. Hirose, Mater. Trans. 54, 860 (2013)

    Article  CAS  Google Scholar 

  14. T. Ogura, S. Takata, M. Takahashi, A. Hirose, Mater. Trans. 56, 1030 (2015)

    Article  CAS  Google Scholar 

  15. F. Mu, Z. Zhao, G. Zou, H. Bai, A. Wu, L. Liu, D. Zhang, Y.N. Zhou, Mater. Trans. 54, 872 (2013)

    Article  CAS  Google Scholar 

  16. T. Matsuda, K. Inami, K. Motoyama, T. Sano, A. Hirose, Sci. Rep. 8, 10472 (2018)

    Article  Google Scholar 

  17. K. Asama, T. Matsuda, T. Ogura, T. Sano, M. Takahashi, A. Hirose, Mater. Sci. Eng. A 702, 398 (2017)

    Article  CAS  Google Scholar 

  18. K. Motoyama, T. Matsuda, T. Sano, A. Hirose, J. Electron. Mater. 47, 5780 (2018)

    Article  CAS  Google Scholar 

  19. H. Zhang, Y. Gao, J. Jiu, K. Suganuma, J. Alloys Compd. 696, 123 (2017)

    Article  CAS  Google Scholar 

  20. L. He, J. Li, X. Wu, F. Mu, Y. Wang, Y. Lu, T. Suga, Metals 10, 315 (2020)

    Article  CAS  Google Scholar 

  21. Y.-J. Lee, J.-H. Lee, Electron. Mater. Lett. 18, 94 (2022)

    Article  CAS  Google Scholar 

  22. N.L. Yong, A. Ahmad, A.W. Mohammad, Int. J. Sci. Eng. Res. 4, 155 (2013)

    Google Scholar 

  23. E.B. Choi, Y.-J. Lee, J.-H. Lee, J. Alloys Compd. 897, 163223 (2022)

    Article  CAS  Google Scholar 

  24. E.B. Choi, J.-H. Lee, Appl. Surf. Sci. 580, 152347 (2022)

    Article  Google Scholar 

  25. K.P. Jayadevan, N.V. Kumer, R.M. Mallya, K.T. Jacob, J. Mater. Sci. 35, 2429 (2000)

    Article  CAS  Google Scholar 

  26. I. Kim, S. Chun, J. Electron. Mater. 40, 1977 (2011)

    Article  CAS  Google Scholar 

  27. G.B. Hoflund, Z.F. Hazos, Phys. Rev. B 62, 11126 (2000)

    Article  CAS  Google Scholar 

  28. K. Suganuma, S.-J. Kim, K.-S. Kim, JOM 61, 64 (2009)

    Article  CAS  Google Scholar 

  29. S. Zhang, Q. Wang, T. Lin, P. Zhang, P. He, K.-W. Paik, J. Manuf. Process. 62, 546 (2021)

    Article  Google Scholar 

  30. J.H. Kim, J.-H. Lee, Jpn. J. Appl. Phys. 55, 06JG01 (2016)

    Article  Google Scholar 

  31. Y. Liu, S. Lin, H. Zhang, S. Nagao, C. Chen, K. Suganuma, Scr. Mater. 184, 1 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No: 2021R1A2C1007400). This paper was also supported by a Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008458, HRD Program for Industrial Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyun Lee.

Ethics declarations

Conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Lee, JH. Ultrafast Sinter Bonding Between Cu Finishes Under Moderate Compression Using In Situ Derived Ag Formed via Low-Temperature Decomposition of Ag2O in the Bonding Paste. Met. Mater. Int. 29, 1775–1785 (2023). https://doi.org/10.1007/s12540-022-01320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01320-7

Keywords

Navigation