Skip to main content
Log in

A New Digital Image Correlation Method for Measuring Wide Strain Range True Stress–Strain Curve of Clad Materials

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Accurate evaluation of the nonlinear hardening behavior (i.e., wide strain range true stress–strain curve) of developed materials as structural materials is essential because it is directly related to user safety and is input data of simulation for plasticity, structural analysis, and sheet forming. However, the conventional methods to measure intrinsic mechanical properties can only characterize homogeneous materials, and the technique to evaluate heterostructured materials such as clad materials is lacking so far. In this study, the nonlinear hardening behavior of the clad material was evaluated using the tensile test and digital image correlation (DIC) to introduce the clad materials into the practical industry. The new method considers the mechanical properties of all layers constituting the clad material by observing the side surface of the specimen, unlike the conventional DIC methods of obtaining the true stress–strain curves from the images of the front surface of the specimen. The reliability of the obtained wide strain range true stress–strain curve calculated using the proposed method was validated using the finite element method simulation. The proposed method can provide trustworthy intrinsic mechanical properties of newly developed clad materials, which are promising next-generation materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Gautham, S. Sasmal, Constr. Bulid. Mater. 233, 833 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.002

    Article  CAS  Google Scholar 

  2. G.H. Gu, J. Kwon, J. Moon, H. Kwon, J. Lee, Y. Kim, E.S. Kim, M.H. Seo, H. Hwang, H.S. Kim, J. Mater. Res. Technol. 17, 392 (2022). https://doi.org/10.1016/j.jmrt.2022.01.012

    Article  CAS  Google Scholar 

  3. C.S. Ho, M.K.M. Nor, Met. Mater. Int. 27, 4967 (2021). https://doi.org/10.1007/s12540-020-00858-8

    Article  CAS  Google Scholar 

  4. C. Di, X. Yan, X. Lv, C. Yan, W. Ye, D. Li, Met. Mater. Int. 27, 5008 (2021). https://doi.org/10.1007/s12540-020-00934-z

    Article  CAS  Google Scholar 

  5. S. Khare, K. Kumar, S. Choudhary, P.K. Singh, R.K. Verma, P. Mahajan, Met. Mater. Int. 27, 4984 (2021). https://doi.org/10.1007/s12540-020-00895-3

    Article  CAS  Google Scholar 

  6. A. Ouladbrahim, I. Belaidi, S. Khatir, E. Magagnini, R. Capozucca, M.A. Wahab, Met. Mater. Int. 28, 370 (2022). https://doi.org/10.1007/s12540-021-01024-4

    Article  Google Scholar 

  7. S.K. Paul, S. Roy, S. Sivaprasad, S. Tarafder, J. Mater. Eng. Perform. 27, 4893 (2018). https://doi.org/10.1007/s11665-018-3566-5

    Article  CAS  Google Scholar 

  8. J.-S. Kim, K.S. Lee, Y.N. Kwon, B.-J. Lee, Y.W. Chang, S. Lee, Mater. Sci. Eng. A 628, 1 (2015). https://doi.org/10.1016/j.msea.2015.01.035

    Article  CAS  Google Scholar 

  9. Q. Li, W. Chen, J. Du, M. Lu, Z. Wang, Y. Huang, Mater. Sci. Eng. A 829, 142178 (2022). https://doi.org/10.1016/j.msea.2021.142178

    Article  CAS  Google Scholar 

  10. Q. Grydin, G. Gerstein, F. Nürnberger, M. Schper, V. Danchenko, J. Manuf. Process. 15, 501 (2013). https://doi.org/10.1016/j.jmapro.2013.08.008

    Article  Google Scholar 

  11. G. Chen, J. Li, G. Xu, J. Mater. Process. Technol. 246, 1 (2017). https://doi.org/10.1016/j.jmatprotec.2017.03.003

    Article  CAS  Google Scholar 

  12. H.R. Akramifard, H. Mirzadeh, M.H. Parsa, Mater. Sci. Eng. A 613, 232 (2014). https://doi.org/10.1016/j.msea.2014.06.109

    Article  CAS  Google Scholar 

  13. L.G. Robin, K. Raghukandan, S. Saravanan, Met. Mater. Int. 27, 3493 (2021). https://doi.org/10.1007/s12540-020-00641-9

    Article  CAS  Google Scholar 

  14. H.W. Liu, C. Guo, Y. Cheng, X.F. Liu, G.J. Shao, Mater. Lett. 60, 180 (2006). https://doi.org/10.1016/j.matlet.2005.08.0150

    Article  CAS  Google Scholar 

  15. L. Guo, J. Wang, X. Yun, Z. Chen, Mater. Sci. Eng. A 802, 140670 (2021). https://doi.org/10.1016/j.msea.2020.140670

    Article  CAS  Google Scholar 

  16. G. Chen, G. Xu, Met. Mater. Int. 27, 3013 (2021). https://doi.org/10.1007/s12540-020-00621-z

    Article  CAS  Google Scholar 

  17. J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Korean J. Met. Mater. 54, 231 (2016). https://doi.org/10.3365/KJMM.2016.54.4.231

    Article  CAS  Google Scholar 

  18. G.H. Gu, J. Moon, H.K. Park, Y. Kim, M.H. Seo, H.S. Kim, Exp. Mech. 61, 1343 (2021). https://doi.org/10.1007/s11340-021-00747-0

    Article  Google Scholar 

  19. M. Joun, J.G. Eom, M.C. Lee, Mech. Mater. 40, 586 (2008). https://doi.org/10.1016/j.mechmat.2007.11.006

    Article  Google Scholar 

  20. Z.L. Zhang, M. Hauge, J. Ødegård, C. Thaulow, Int. J. Solids Struct. 36, 3497 (1999). https://doi.org/10.1016/S0020-7683(98)00153-X

    Article  Google Scholar 

  21. C.M. Poulin, T.J. Barrett, M. Knezevic, Exp. Mech. 60, 459 (2020). https://doi.org/10.1007/s11340-019-00577-1

    Article  CAS  Google Scholar 

  22. A.B. Gothekar, SAE Technical Paper (SAE International, Warrendale, 2010). https://doi.org/10.4271/2010-01-0955

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by POSCO (2022Y006) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662).

Author information

Authors and Affiliations

Authors

Contributions

Gang Hee Gu: Conceptualization, Data curation, Investigation, Methodology, Validation, Visualization, Writing—original draft. Yongju Kim: Investigation, Visualization. Rae Eon Kim: Investigation, Validation. Min Hong Seo: Resource. Hyoung Seop Kim: Methodology, Validation, Supervision, Project administration, Funding acquisition, Writing—review & editing.

Corresponding author

Correspondence to Hyoung Seop Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, G.H., Kim, Y., Kim, R.E. et al. A New Digital Image Correlation Method for Measuring Wide Strain Range True Stress–Strain Curve of Clad Materials. Met. Mater. Int. 29, 168–173 (2023). https://doi.org/10.1007/s12540-022-01219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01219-3

Keywords

Navigation