Skip to main content
Log in

A Simplified Procedure to Determine Post-necking True Stress–Strain Curve from Uniaxial Tensile Test of Round Metallic Specimen Using DIC

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Triaxial state of stress is usually generated in the necked zone because of neck geometry, and as a consequence proper correction of true tensile stress–strain curve after necking is mandatory. Various correction factors like Bridgman, Davidenkov and Spiridonova, Siebel and Schwaigere are available in the published literature to calculate true stress from mean axial stress. Similarly true strains can be calculated from the minimum diameters of the round specimen in the necked region for various true stress levels. But experimental determination of correction factors and minimum diameters of the round specimen in the necked region is a cumbersome task. This investigation shows a simplified procedure to determine true strains and the correction factors from digital image correlation-based local strain measurement in the necked region. The present procedure is validated by experimental results of rail steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Joun, I. Choi, J. Eom, and M. Lee, Finite Element Analysis of Tensile Testing with Emphasis on Necking, Comput. Mater. Sci., 2007, 41(1), p 63–69

    Article  Google Scholar 

  2. P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw Hill, New York, 1952

    Google Scholar 

  3. P.W. Bridgman, The Stress Distribution at the Neck of a Tension Specimen, Trans. Am. Soc. Met., 1944, 32, p 553–574

    Google Scholar 

  4. F. Zhu, P. Bai, J. Zhang, D. Lei, and X. He, Measurement of True Stress–Strain Curves and Evolution of Plastic Zone of Low Carbon Steel Under Uniaxial Tension Using Digital Image Correlation, Opt. Lasers Eng., 2015, 65, p 81–88

    Article  Google Scholar 

  5. M. Kamaya and M. Kawakubo, A Procedure for Determining the True Stress–Strain Curve Over a Large Range of Strains Using Digital Image Correlation and Finite Element Analysis, Mech. Mater., 2011, 43, p 243–253

    Article  Google Scholar 

  6. M.S. Joun, J.G. Eom, and M.C. Lee, A New Method for Acquiring True Stress–Strain Curves Over a Large Range of Strains Using a Tensile Test and Finite Element Method, Mech. Mater., 2008, 40, p 586–593

    Article  Google Scholar 

  7. G. Mirone, A New Model for the Elastoplastic Characterization and the Stress–Strain Determination on the Necking Section of a Tensile Specimen, Int. J. Solids Struct., 2004, 41(13), p 3545–3565

    Article  Google Scholar 

  8. Z.L. Zhang, M. Hauge, J. Odegard, and C. Thaulow, Determining True Stress–Strain Curve from Tensile Specimens with Rectangular Cross-Section, Int. J. Solids Struct., 1999, 36, p 3497–3516

    Article  Google Scholar 

  9. A. Nasser, A. Yadav, P. Pathak, and T. Altan, Determination of the Flow Stress of Five AHSS Sheet Materials (DP 600, DP 780, DP780-CR, DP 780-HY and TRIP 780) Using the Uniaxial Tensile and the Biaxial Viscous Pressure Bulge (VPB) Tests, J. Mater. Process. Technol., 2010, 210, p 429–436

    Article  Google Scholar 

  10. N. Tardif and S. Kyriakides, Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal, Int. J. Solids Struct., 2012, 49(25), p 3496–3506

    Article  Google Scholar 

  11. J.-H. Kim, A. Serpantié, F. Barlat, F. Pierron, and M.-G. Lee, Characterization of the Post-necking Strain Hardening Behavior Using the Virtual Fields Method, Int. J. Solids Struct., 2013, 50, p 3829–3842

    Article  Google Scholar 

  12. M.A. Iadicola, Validation of Uniaxial Data Beyond Uniform Elongation, in Proceedings of 8th the International Conference and Workshop on Numerical Simulation of 3DSheet Metal Forming Processes, AIP Conf. Proc., 2011, 1383, pp 742–749.

  13. K. Zhao, L. Wang, Y. Chang, and J. Yan, Identification of Post-necking Stress–Strain Curve for Sheet Metals by Inverse Method, Mech. Mater., 2016, 92, p 107–118

    Article  Google Scholar 

  14. X. Zhuang, Z. Zhao, H. Li, and H. Xiang, Experimental Methodology for Obtaining the Flow Curve of Sheet Materials in a Wide Range of Strains, Steel Res. Int., 2013, 84(2), p 146–154

    Article  Google Scholar 

  15. L. Wang and W. Tong, Identification of Post-necking Strain Hardening Behavior of Thin Sheet Metals from Image-Based Surface Strain Data in Uniaxial Tension Tests, Int. J. Solids Struct., 2015, 75-76, p 12–31

    Article  Google Scholar 

  16. S.K. Paul, S. Roy, S. Sivaprasad, H.N. Bar, and S. Tarafder, Local Ratcheting Response in Dissimilar Metal Weld Joint: Characterization Through Digital Image Correlation Technique, J. Mater. Eng. Perform., 2017, 26(10), p 4953–4963

    Article  Google Scholar 

  17. H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Local Plastic Strain Evolution in a High Strength Dual-Phase Steel, Mater. Sci. Eng. A, 2010, 527(18–19), p 5026–5032

    Article  Google Scholar 

  18. H. Ghadbeigi, C. Pinna, and S. Celotto, Failure Mechanisms in DP600 Steel: Initiation, Evolution and Fracture, Mater. Sci. Eng. A, 2013, 588, p 420–431

    Article  Google Scholar 

  19. L. Dong, S. Li, and J. He, Ductile Fracture Initiation of Anisotropic Metal Sheets, J. Mater. Eng. Perform., 2017, 26(7), p 3285–3298

    Article  Google Scholar 

  20. Z. Chen, G. Fang, and J.-Q. Zhao, Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures, J. Mater. Eng. Perform., 2017, 26(9), p 4626–4637

    Article  Google Scholar 

  21. G. Leroy, J. Embury, G. Edwards et al., A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29, p 1509–1522

    Article  Google Scholar 

  22. E. Siebel and S. Schwaigere, Mechanics of Tensile Test, Arch Eisenhuttenwes., 1948, 19, p 145–152 (in German)

    Google Scholar 

  23. N.N. Davidenkov and N.I. Spiridonova, Mechanical Method of Testing Analysis of the State of Stress in the Neck of a Tension Test Specimen, Proc. Am. Soc. Test. Mater., 1947, 46, p 1147–1158

    Google Scholar 

  24. Z. Ling, Uniaxial True Stress–Strain After Necking, AMP J. Technol., 1996, 5, p 37–48

    Google Scholar 

  25. R.B. Joshi, A.E. Bayoumi, and H.M. Zbib, The Use of Digital Processing in Studying Stretch-Forming Sheet Metal, Exp. Mech., 1992, 32(2), p 117–123

    Article  Google Scholar 

  26. http://www.lavision.de/en/products/strainmaster/strainmaster-dic.php

  27. http://www.lavision.de/de/products/davis-software/index.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Kumar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K., Roy, S., Sivaprasad, S. et al. A Simplified Procedure to Determine Post-necking True Stress–Strain Curve from Uniaxial Tensile Test of Round Metallic Specimen Using DIC. J. of Materi Eng and Perform 27, 4893–4899 (2018). https://doi.org/10.1007/s11665-018-3566-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3566-5

Keywords

Navigation