Skip to main content
Log in

Effects of ZrB2 Nanoparticles on the Microstructures and Tensile Properties of a Hot Extruded In Situ AA6111 Composite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Particle-reinforced aluminum matrix composites (PRAMCs) always show a low forming stability because the particles are easily separated from the matrix, leaving voids and forming cracks. Extruded in situ PRAMCs are gradually replacing ex situ PRAMCs due to the higher interface bonding between the in situ reinforcements and matrix. In this study, a hot-extruded in situ AA6111 composite with ZrB2 nanoparticles was obtained from an Al-Zr-B system. The effects of the ZrB2 content on the geometrically necessary dislocation (GND) density, grain size, grain boundaries, textures and tensile properties of AA6111 composites were researched. The results showed that as the volume fraction of ZrB2 increased, the mean GND dislocation density increased from 1.53 × 1015 m−2 to 3.23 × 1015 m−2, and most dislocations were located around the ZrB2 nanoparticle clusters. In addition, an increase in the ZrB2 content decreased the frequency of high-angle grain boundaries (HAGBs) from 79.28 to 69.45% and increased the frequency of low-angle grain boundaries (LAGBs). ZrB2 nanoparticle clusters which were located along the grain boundaries promoted continuous dynamic recrystallization (CDRX) and remarkably refined the grains, with the mean size decreasing from 48.2 to 1.8 μm. However, dispersed ZrB2 nanoparticles inside the grains suppressed CDRX. Tensile tests showed that the properties rose dramatically with an increasing volume fraction of ZrB2, and the optimum ultimate tensile strength (UTS), yield strength (YS) and elongation (El) of the 2 vol% ZrB2/AA6111 composite were 365 MPa, 280 MPa, and 25.6%, respectively. The mechanisms for CDRX, strengthening and plasticity enhancement were determined and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.K. Ji, F. Barlat, C. Kim, K. Chung, Met. Mater. Int. 15, 125 (2009). https://doi.org/10.1007/s12540-009-0125-5

    Article  Google Scholar 

  2. O. Engler, C. Schafer, H.-J. Brinkman, Acta Mater. 60, 5217 (2012). https://doi.org/10.1016/j.actamat.2012.06.039

    Article  Google Scholar 

  3. M.G. Lee, H. Ryou, C. Kim, S.J. Kim, K. Chung, Met. Mater. Int. 14, 21 (2008). https://doi.org/10.3365/met.mat.2008.02.021

    Article  Google Scholar 

  4. H. Jin, D.J. Lloyd, Mater. Sci. Eng. A 465, 267 (2007). https://doi.org/10.1016/j.msea.2007.02.128

    Article  Google Scholar 

  5. M. Zabihi, E. Emadoddin, F. Qods, Met. Mater. Int. 26, 1 (2020). https://doi.org/10.1007/s12540-019-00299-y

    Article  Google Scholar 

  6. R.R. Fard, F. Akhlaghi, J. Mater. Process. Tech. 187–188, 433 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.077

    Article  Google Scholar 

  7. C.S. Ramesh, R. Keshavamurthy, P.G. Koppad, K.T. Kashyap, Trans. Nonferrous Met. Soc. China 23, 53 (2013). https://doi.org/10.1016/S1003-6326(13)62428-0

    Article  Google Scholar 

  8. A. Fathy, A. Sadoun, M. Abdelhameed, Int. J. Adv. Manuf. Technol. 73, 1049 (2014). https://doi.org/10.1007/s00170-014-5901-9

    Article  Google Scholar 

  9. L.M. Tham, M. Gupta, L. Cheng, Mater. Sci. Eng. A 326, 355 (2007). https://doi.org/10.1016/S0921-5093(01)01526-X

    Article  Google Scholar 

  10. C.S. Ramesh, S. Pramod, R. Keshavamurthy, Mater. Sci. Eng. A 538, 4125 (2011). https://doi.org/10.1016/j.msea.2011.02.024

    Article  Google Scholar 

  11. Y.-T. Zhao, S.-L. Zhang, G. Chen, X.-N. Cheng, C.-Q. Wang, Compos. Sci. Technol. 68, 1463 (2008). https://doi.org/10.1016/j.compscitech.2007.10.036

    Article  Google Scholar 

  12. Y. Sahin, Mater. Design 24, 671 (2003). https://doi.org/10.1016/s0261-3069(03)00156-0

    Article  Google Scholar 

  13. T.X. Fan, D. Zhang, G. Yang, T. Shibayanagi, M. Naka, J. Mater. Process. Tech. 142, 556 (2003). https://doi.org/10.1016/s0924-0136(03)00659-9

    Article  Google Scholar 

  14. Q.C. Jiang, X.L. Li, H.Y. Wang, Scripta Mater. 48, 713 (2003). https://doi.org/10.1016/s1359-6462(02)00551-1

    Article  Google Scholar 

  15. X.P. Li, C.Y. Liu, K. Luo, M.Z. Ma, R.P. Liu, J. Mater. Sci. Technol. 32, 291 (2016). https://doi.org/10.1016/j.jmst.2015.12.006

    Article  Google Scholar 

  16. M.R. Toroghinejad, R. Jamaati, J. Dutkiewicz, J.A. Szpunar, Mater. Design 51, 274 (2013). https://doi.org/10.1016/j.matdes.2013.04.002

    Article  Google Scholar 

  17. C.Y. Dan, Z. Chen, G. Ji, S.H. Zhong, Y. Wu, F. Brisset, H.W. Wang, V. Ji, Mater. Design 130, 357 (2017). https://doi.org/10.1016/j.matdes.2017.05.076

    Article  Google Scholar 

  18. N. Soltani, H.R. Jafari Nodooshan, A. Bahrami, M.I. Pech-Canul, W. Liu, G. Wu, Mater. Design 53, 774 (2014). https://doi.org/10.1016/j.matdes.2013.07.084

    Article  Google Scholar 

  19. R. Zamani, H. Mirzadeh, M. Emamy, Mater. Sci. Eng. A 726, 10 (2018). https://doi.org/10.1016/j.msea.2018.04.064

    Article  Google Scholar 

  20. S. Zhao, H. Zhang, Z. Cui, D. Chen, Z. Chen, J. Alloy. Compd. 834, 155136 (2020). https://doi.org/10.1016/j.jallcom.2020.155136

    Article  Google Scholar 

  21. S.D. Kumar, M. Ravichandran, M. Meignanamoorthy, Mater. Today Proc. 5, 19844 (2018). https://doi.org/10.1016/j.matpr.2018.06.348

    Article  Google Scholar 

  22. N. Kumar, R.K. Gautam, S. Mohan, Mater. Design 80, 129 (2015). https://doi.org/10.1016/j.matdes.2015.05.020

    Article  Google Scholar 

  23. K. Tian, Y. Zhao, L. Jiao, Z. Zhang, X. Wu, J. Alloy. Compd. 594, 1 (2014). https://doi.org/10.1016/j.jallcom.2014.01.117

    Article  Google Scholar 

  24. R. Tao, Y. Zhao, X. Kai, Z. Zhao, R. Ding, L. Liang, W. Tai, Mater. Sci. Eng. A 732, 138 (2018). https://doi.org/10.1016/j.msea.2018.06.107

    Article  Google Scholar 

  25. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Hoppel, M. Goken, J. Narayan, Y. Zhu, Acta Mater. 116, 43 (2016). https://doi.org/10.1016/j.actamat.2016.06.023

    Article  Google Scholar 

  26. L. Lu, M.O. Lai, F.L. Chen, Acta Mater. 45, 4297 (1997). https://doi.org/10.1016/s1359-6454(97)00075-x

    Article  Google Scholar 

  27. Z. Liu, P. Li, L. Xiong, T. Liu, L. He, Mater. Sci. Eng. A 680, 259 (2017). https://doi.org/10.1016/j.msea.2016.10.095

    Article  Google Scholar 

  28. Z. Yan, D. Wang, X. He, W. Wang. H. Zhang, P. Dong, Z. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng. A 723, 212 (2018). https://doi.org/10.1016/j.msea.2018.03.023

  29. Z. Chen, G.A. Sun, Y. Wu, M.H. Mathon, A. Borbely, D. Chen, G. Ji, M.L. Wang, S.Y. Zhong, H.W. Wang, Mater. Design 116, 577 (2017). https://doi.org/10.1016/j.matdes.2016.12.070

    Article  Google Scholar 

  30. D.M. Stefanescu, D. Shangguan, P. von den Brincken, Mater. Sci. Forum 77, 25 (1991). https://doi.org/10.4028/www.scientific.net/MSF.77.25

    Article  Google Scholar 

  31. J. Gu, X. Wang, J. Bai, J. Ding, S. Williams, Y. Zhai, K. Liu, Mater. Sci. Eng. A 712, 292 (2018). https://doi.org/10.1016/j.msea.2017.11.113

    Article  Google Scholar 

  32. J. Geng, T. Hong, Y. Shen, G. Liu, C. Xia, D. Chen, M. Wang, H. Wang, Mater. Charact. 124, 50 (2017). https://doi.org/10.1016/j.matchar.2016.11.032

    Article  Google Scholar 

  33. F.J. Humphreys, W.S. Miller, M.R. Djazeb, Mater. Sci. Technol. 6, 1157 (1990). https://doi.org/10.1179/mst.1990.6.11.1157

    Article  Google Scholar 

  34. A.W. Bowen, Mater. Sci. Technol. 6, 1058 (1990). https://doi.org/10.1179/mst.1990.6.11.1058

    Article  Google Scholar 

  35. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, B.Y. Zhang, Mater. Sci. Eng. A 488, 64 (2008). https://doi.org/10.1016/j.msea.2007.10.051

    Article  Google Scholar 

  36. T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490, 411 (2008). https://doi.org/10.1016/j.msea.2008.02.004

    Article  Google Scholar 

  37. H.E. Hu, L. Zhen, B.Y. Zhang, L. Yang, J.Z. Chen, Mater. Charact. 59, 1185 (2008). https://doi.org/10.1016/j.matchar.2007.09.010

    Article  Google Scholar 

  38. M. Ueki, S. Horie, T. Nakamura, Mater. Sci. Technol. 3, 329 (1987). https://doi.org/10.1179/mst.1987.3.5.329

    Article  Google Scholar 

  39. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon, Oxford, 2004)

    Google Scholar 

  40. Z. Zhang, R. Yang, Y. Guo, G. Chen, Y. Lei, Y. Cheng, Y. Yue, Mater. Sci. Eng. A 689, 411 (2017). https://doi.org/10.1016/j.msea.2017.02.083

    Article  Google Scholar 

  41. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, C.P. Chang, Acta Mater. 54, 5241 (2006). https://doi.org/10.1016/j.actamat.2006.06.054

    Article  Google Scholar 

  42. R.J. McElroy, Z.C. Szkopiak, Int. Met. Rev. 17, 175 (1972). https://doi.org/10.1179/imtlr.1972.17.1.175

    Article  Google Scholar 

  43. J.G. Park, D.H. Keum, Y.H. Lee, Carbon 95, 690 (2015). https://doi.org/10.1016/j.carbon.2015.08.112

    Article  Google Scholar 

  44. G. Tempus, W. Calles, G. Scharf, Mater. Sci. Technol. 7, 937 (1991). https://doi.org/10.1179/mst.1991.7.10.937

    Article  Google Scholar 

  45. S.A. Sajjadi, H.R. Ezatpour, H. Beygi, Mater. Sci. Eng. A 528, 8765 (2011). https://doi.org/10.1016/j.msea.2011.08.052

    Article  Google Scholar 

  46. R.J. Arsenault, N. Shi, Mater. Sci. Eng. A 81, 175 (1986). https://doi.org/10.1016/0025-5416(86)90261-2

    Article  Google Scholar 

  47. N. Hansen, Acta Mater. 25, 863 (1977). https://doi.org/10.1016/0001-6160(77)90171-7

    Article  Google Scholar 

  48. K. Edalati, J.M. Cubero-Sesin, A. Alhamidi, I.F. Mohamed, Z. Horita, Mater. Sci. Eng. A 613, 103 (2014). https://doi.org/10.1016/j.msea.2014.06.084

    Article  Google Scholar 

  49. P. Li, S. Liu, L. Zhang, X. Liu, Mater. Design 47, 522 (2012). https://doi.org/10.1016/j.matdes.2012.12.033

    Article  Google Scholar 

  50. P.J. Apps, M. Berta, P.B. Prangnell, Acta Mater. 53, 499 (2005). https://doi.org/10.1016/j.actamat.2004.09.042

    Article  Google Scholar 

  51. A. Macwan, A. Kumar, D.L. Chen, Mater. Design 113, 284 (2017). https://doi.org/10.1016/j.matdes.2016.10.025

    Article  Google Scholar 

  52. D.P. Mondal, S. Das, K.S. Suresh, N. Ramakrishnan, Mater. Sci. Eng. A 460–461, 550 (2007). https://doi.org/10.1016/j.msea.2007.03.001

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially sponsored by the National Natural Science Foundation of China (Nos. U20A20274, 52071158, 51701085, U1664254), the Six Talents Peak Project of Jiangsu Province (2018-XCL-202), the Open Funds of SKLMMC of SJTU (MMC-KF18-16), the Jiangsu Province Key Laboratory of High-end Structural Materials (HSM1803, 1902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Zhao, Y., Chen, G. et al. Effects of ZrB2 Nanoparticles on the Microstructures and Tensile Properties of a Hot Extruded In Situ AA6111 Composite. Met. Mater. Int. 28, 3145–3159 (2022). https://doi.org/10.1007/s12540-022-01192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01192-x

Keywords

Navigation