Skip to main content
Log in

First‐Principles Study on Stacking Fault Energy of Disordered γ-Fe1 − xMnx with Antiferromagnetic Configuration

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The stacking fault energy (SFE) of Fe-Mn alloys is studied by first-principles calculations with chemical disorder and order, nonmagnetic (NM) and antiferromagnetic (AFM) configurations. It is found that Mn atom has a short-range effect on both nonmagnetic and antiferromagnetic stacking faults (SF) plane. Mn atom reduces the intrinsic stacking fault energy (ISFE) and unstable stacking fault energy (USFE) when it is in the vicinity of the SF plane. Short-range effect is 42% in AFM configuration larger than 12.6% in NM configuration when Mn atom is on SF plane. The phenomenon of generalized stacking fault energy (GSFE) curve and short-range effect are investigated by topological analysis and electron structures respectively. Furthermore, the twinning tendency is proven to be stronger in AFM γ-FeMn with increasing Mn concentration than other deformation mechanisms.

Graphic Abstract

Stacking fault energy of disordered γ-Fe1-xMnx with antiferromagnetic configuration is calculated by VASP+SQS method. We analyze the “short-range effect” of Mn atom and illustrate the relationship between stacking fault energy and deformation mechanism in γ-Fe1 − xMnx

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.K. Lee, J. Han, Mater. Sci. Technol. 31, 843 (2015)

    Article  CAS  Google Scholar 

  2. B.C. De Cooman, O. Kwon, K.G. Chin, Mater. Sci. Technol. 28, 513 (2015)

    Article  CAS  Google Scholar 

  3. O. Bouaziz, S. Allain, C. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid St. M. 15, 141 (2011)

    Article  CAS  Google Scholar 

  4. O. GraSsel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plasticity 16, 1391 (2000)

    Article  CAS  Google Scholar 

  5. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387, 158 (2004)

    Article  CAS  Google Scholar 

  6. T. Yonezawa, K. Suzuki, S. Ooki, Metall. Mater. Trans. A 44, 5884 (2013)

    Article  CAS  Google Scholar 

  7. R.E. Schramm, P. Reed, Metall. Mater. Trans. A 6, 1345 (1975)

    Article  Google Scholar 

  8. J. Saeed-Akbari, U. Imlau, W. Prahl, Bleck, Metall. Mater. Trans. A 40, 3076 (2009)

    Article  CAS  Google Scholar 

  9. D. Zhao, O.M. Lovvik, K. Marthinsen, Y. Li, J. Mater. Sci. 51, 6552 (2016)

    Article  CAS  Google Scholar 

  10. R. Wang, S. Wang, X. Wu, Phys. Scripta 83, 045604 (2011)

    Article  CAS  Google Scholar 

  11. J. Hartford, B. Von Sydow, G. Wahnström, B.I. Lundqvist, Phys. Rev. B 58, 2487 (1998)

    Article  CAS  Google Scholar 

  12. S. Kibey, J. Liu, D. Johnson, H. Sehitoglu, Acta Mater. 55, 6843 (2007)

    Article  CAS  Google Scholar 

  13. N. Cabañas, J. Penning, N. Akdut, B.C.D. Cooman, Metall. Mater. Trans. A 37, 3305 (2006)

    Article  Google Scholar 

  14. J. Nakano, P.J. Jacques, Calphad 34, 167 (2010)

    Article  CAS  Google Scholar 

  15. L. Vitos, J.-O. Nilsson, B. Johansson, Acta Mater. 54, 3821 (2006)

    Article  CAS  Google Scholar 

  16. W. Huang, Calphad 13, 243 (1989)

    Article  CAS  Google Scholar 

  17. P.Y. Volosevich, V.N. Gridnev, Y.N. Petrov, Phys. Met. Metallogr. 42, 126 (1976)

    Google Scholar 

  18. A. Dick, T. Hickel, J. Neugebauer, Steel Res. Int. 80, 603 (2009)

    CAS  Google Scholar 

  19. C. Wang, W. Zu, H. Wang, Y. Wang, First-principles study on stacking fault energy of γ-Fe–Mn alloys. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00821-7

  20. M. Jo, M.K. Yang, S.K. Kwon, Met. Mater. Int. 21, 227 (2015)

    Article  CAS  Google Scholar 

  21. S. Curtze, V.-T. Kuokkala, A. Oikari, J. Talonen, H. Hänninen, Acta Mater. 59, 1068 (2011)

    Article  CAS  Google Scholar 

  22. L.C. Choi, Metall. Mater. Trans. A 31, 355 (2000)

    Article  Google Scholar 

  23. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  CAS  Google Scholar 

  24. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  25. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  CAS  Google Scholar 

  26. A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, Calphad 42, 13 (2013)

    Article  CAS  Google Scholar 

  27. S.-H. Wei, L. Ferreira, J.E. Bernard, A. Zunger, Phys. Rev. B 42, 9622 (1990)

    Article  CAS  Google Scholar 

  28. J.L. Kaufman, G.S. Pomrehn, A. Pribram-Jones, R. Mahjoub, M. Ferry, K.J. Laws, L. Bassman, Phys. Rev. B 95, 094112 (2017)

    Article  Google Scholar 

  29. W. Chen, S. Cao, W. Kou, J. Zhang, Y. Wang, Y. Zha, Y. Pan, Q. Hu, Q. Sun, J. Sun, Acta Mater. 170, 187 (2019)

    Article  CAS  Google Scholar 

  30. M.D. Jong, L. Qi, D.L. Olmsted, A.V.D. Walle, M. Asta, Phys. Rev. B 93, 094101 (2016)

    Article  CAS  Google Scholar 

  31. ​A. Otero-de-la-Roza, M.A. Blanco, A. Martín Pendás, V. Luaña, Comput. Phys. Commun. 180, 157 (2009)

    Article  CAS  Google Scholar 

  32. A. Otero-de-la-Roza, E.R. Johnson, V. Luaña, Comput. Phys. Commun. 185, 1007 (2014)

    Article  CAS  Google Scholar 

  33. C. Gatti, Z. Kristallogr. 220, 399 (2005)

    Article  CAS  Google Scholar 

  34. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117, 5529 (2002)

    Article  CAS  Google Scholar 

  35. H.C. Herper, E. Hoffmann, P. Entel, Phys. Rev. B 60, 3839 (1999)

    Article  CAS  Google Scholar 

  36. D.E. Jiang, E.A. Carter, Phys. Rev. B 67, 214103 (2003)

    Article  CAS  Google Scholar 

  37. I. Bleskov, T. Hickel, J. Neugebauer, A. Ruban, Phys. Rev. B 93, 214115 (2016)

    Article  CAS  Google Scholar 

  38. A. Abbasi, A. Dick, T. Hickel, J. Neugebauer, Acta Mater. 59, 3041 (2011)

    Article  CAS  Google Scholar 

  39. H. Gholizadeh, C. Draxl, P. Puschnig, Acta Mater. 61, 341 (2013)

    Article  CAS  Google Scholar 

  40. H. Schumann, Krist. Tech. 9, 1141 (1974)

    Article  CAS  Google Scholar 

  41. D.J. Siegel, Appl. Phys. Lett. 87, 121901 (2005)

    Article  CAS  Google Scholar 

  42. W. Li, S. Lu, Q.-M. Hu, S.K. Kwon, B. Johansson, L. Vitos, J. Phys. Condens. Mat. 26, 265005 (2014)

    Google Scholar 

  43. N. Medvedeva, M. Park, D.C. Van Aken, J.E. Medvedeva, J. Alloy. Compd. 582, 475 (2014)

    Article  CAS  Google Scholar 

  44. K.R. Limmer, J.E. Medvedeva, D.C. Van Aken, N.I. Medvedeva, Comput. Mater. Sci. 99, 253 (2015)

    Article  CAS  Google Scholar 

  45. J. Takahashi, K. Ishikawa, K. Kawakami, M. Fujioka, N. Kubota, Acta Mater. 133, 41 (2017)

    Article  CAS  Google Scholar 

  46. L.-Y. Tian, L.-H. Ye, Q.-M. Hu, S. Lu, J. Zhao, L. Vitos, Comput. Mater. Sci. 128, 302 (2017)

    Article  CAS  Google Scholar 

  47. L.-Y. Tian, Q.-M. Hu, R. Yang, J. Zhao, B. Johansson, L. Vitos, J. Phys. Condens. Mat. 27, 315702 (2015)

    Google Scholar 

  48. R.F.W. Bader, J. Phys. Chem. A 114, 7431 (2010)

    Article  CAS  Google Scholar 

  49. R. Bianchi, G. Gervasio, D. Marabello, Inorg. Chem. 39, 2360 (2000)

    Article  CAS  Google Scholar 

  50. S. Reeh, D. Music, T. Gebhardt, M. Kasprzak, T. Japel, S. Zaefferer, D. Raabe, S. Richter, A. Schwedt, J. Mayer, B. Wietbrock, G. Hirt, J.M. Schneider, Acta Mater. 60, 6025 (2012)

    Article  CAS  Google Scholar 

  51. S. Jenkins, J. Phys. Condens. Mat. 14, 10251 (2002)

    CAS  Google Scholar 

  52. S. Jenkins, P.W. Ayers, S.R. Kirk, P. Mori-Sanchez, A.M. Pendas, Chem. Phys. Lett. 471, 174 (2009)

    Article  CAS  Google Scholar 

  53. P.W. Ayers, S. Jenkins, Comput. Theor. Chem. 1053, 112 (2015)

    Article  CAS  Google Scholar 

  54. P. Lepetit, K. Fau, M.L. Fajerwerg, B. Kahn, Silvi, Coordin. Chem. Rev. 345, 150 (2017)

    Article  CAS  Google Scholar 

  55. S. Reeh, D. Music, M. Ekholm, A. Abrikosov, J.M. Schneider, Phys. Rev. B 87, 224103 (2013)

    Article  CAS  Google Scholar 

  56. M. Jo, Y.M. Koo, B.-J. Lee, B. Johansson, L. Vitos, S.K. Kwon, P. Natl. Acad. Sci. USA 111, 6560 (2014)

    Article  CAS  Google Scholar 

  57. W. Li, S. Lu, Q.-M. Hu, B. Johansson, S.K. Kwon, M. Grehk, J.Y. Johnsson, L. Vitos, Philos. Mag. 96, 524 (2016)

    Article  CAS  Google Scholar 

  58. Z. Dong, S. Schnecker, D. Chen, W. Li, L. Vitos, Int. J. Plasticity 119, 123 (2019)

    Article  CAS  Google Scholar 

  59. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Key R&D Program of China (2017YFB0703002) and the National Natural Science Foundation of China (51971127). We appreciate the High Performance Computing Center of Shanghai University and Beijing Computing Center for providing the computing resources and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Wang, J., Wang, H. et al. First‐Principles Study on Stacking Fault Energy of Disordered γ-Fe1 − xMnx with Antiferromagnetic Configuration. Met. Mater. Int. 28, 1215–1223 (2022). https://doi.org/10.1007/s12540-021-01004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01004-8

Keywords

Navigation