Skip to main content
Log in

Effect of Cyclic Deep Cryogenic Treatment on Corrosion Resistance of 7075 Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The cyclic deep cryogenic treatment was proposed to improve both the hardness and corrosion resistance of the high strength 7075 aluminum alloy. The effect of different CDCT times on the exfoliation corrosion and intergranular corrosion of the alloys were observed by scanning electron microscope. The corrosion behaviors of the alloys were monitored by electrochemical techniques. The hardness of the alloy was measured by Vickers hardness tester. Furthermore, the microstructures of the alloys were examined by transmission electron microscope. The results show that the corrosion resistance and hardness are strongly affected by the precipitate state. The discontinuous grain boundary precipitates and the wide precipitate free zones will enhance the corrosion resistance. The fine precipitates distributed evenly in the matrix can increase the hardness. After the CDCT, the corrosion resistance is remarkably improved without sacrificing the hardness. The best combination of the hardness and corrosion resistance is exhibited for the alloy treated with the CDCT twice.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, J. Alloy. Compd. 550, 438 (2013)

    Article  CAS  Google Scholar 

  2. J.C. Williams, E.A. Starke, Acta Mater. 51, 5775 (2003)

    Article  CAS  Google Scholar 

  3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhayer, R. Benedictus, W.S. Miller, Mater. Sci. Eng. A 280, 102 (2000)

    Article  Google Scholar 

  4. H. Lu, L. Shi, H. Dong, S. Li, D. Guo, C. Tao, J. Alloy. Compd. 689, 278 (2016)

    Article  CAS  Google Scholar 

  5. Z.Y. Ye, D.X. Liu, C.Y. Li, X.M. Zhang, Z. Yang, M.X. Lei, Acta Metall. Sin. Engl. 27, 705 (2014)

    Article  CAS  Google Scholar 

  6. A.S. El-Amoush, Mater. Chem. Phys. 126, 607 (2011)

    Article  CAS  Google Scholar 

  7. Y. Deng, R. Ye, G. Xu, J. Yang, Q. Pan, B. Peng, X. Cao, Y. Duan, Y. Wang, L. Lu, Z. Yin, Corros. Sci. 90, 359 (2015)

    Article  CAS  Google Scholar 

  8. S. Jain, M.L.C. Lim, J.L. Hudson, J.R. Scully, Corros. Sci. 59, 136 (2012)

    Article  CAS  Google Scholar 

  9. J.C.B. Bertoncello, S.M. Manhabosco, L.F.P. Dick, Corros. Sci. 94, 359 (2015)

    Article  CAS  Google Scholar 

  10. S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, S.P. Lynch, Corros. Sci. 52, 4073 (2010)

    Article  CAS  Google Scholar 

  11. X.Y. Sun, B. Zhang, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 77, 103 (2013)

    Article  CAS  Google Scholar 

  12. T. Ramgopal, P.I. Gouma, G.S. Frankel, Corrosion 58, 687 (2002)

    Article  CAS  Google Scholar 

  13. S. Maitra, G.C. English, Metall. Trans. A 12, 535 (1981)

    Article  CAS  Google Scholar 

  14. M.J. Robinson, N.C. Jackson, Corros. Sci. 41, 1013 (1999)

    Article  CAS  Google Scholar 

  15. Y.L. He, X.M. Wang, J. Hu, Q. Zhou, H. Chen, Int. J. Mod. Phys. B 31, 16 (2017)

    Google Scholar 

  16. X.W. Qiu, Met. Mater. Int. 26, 998 (2020)

    Article  CAS  Google Scholar 

  17. X.H. Wang, J.H. Wang, C.W. Fu, T. Nonferr. Metal. Soc. 24, 3907 (2014)

    Article  CAS  Google Scholar 

  18. T. Khelfa, J.A. Muoz-Bolaos, F. Li, J.M. Cabrera-Marrero, M. Khitouni, Met. Mater. Int. 26, 1247 (2020)

    Article  CAS  Google Scholar 

  19. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Met. Mater. Int. 26, 1099 (2020)

    Article  Google Scholar 

  20. M. Song, K. Chen, J. Mater. Sci. 43, 5265 (2008)

    Article  CAS  Google Scholar 

  21. R.M. Su, Y.D. Qu, R.D. Li, J. Mater. Eng. Perform. 23, 3842 (2014)

    Article  CAS  Google Scholar 

  22. S. Taylor, I. Masters, Z. Li, H.R. Kotadia, Met. Mater. Int. 26, 1030 (2020)

    Article  CAS  Google Scholar 

  23. H.M. Wang, G.R. Li, Y. Cai, Y.T. Zhao, J.J. Wang, K.X. Gu, H. Zhong, Key Eng. Mater. 575–576, 374 (2013)

    Article  Google Scholar 

  24. X. Zhou, L. Guo, Y. Wei, H. Wang, C. Chen, Y. Chen, W. Zhang, S. Liu, R. Liu, S. Mo, Nucl. Mater. Energy 21, 100718 (2019)

    CAS  Google Scholar 

  25. Y. Huang, P.B. Prangnell, Acta Mater. 56, 1619 (2008)

    Article  CAS  Google Scholar 

  26. G. Qin, R.R. Chen, P.K. Liaw, Y.F. Gao, X.Q. Li, H.T. Zheng, L. Wang, Y.Q. Su, J.J. Guo, H.Z. Fu, Scripta Mater. 172, 51 (2019)

    Article  CAS  Google Scholar 

  27. S. Tekeli, I. Simsek, D. Simsek, D. Ozyurek, High Temp. Mat. Pr.-Isr. 38, 892 (2019)

    Article  CAS  Google Scholar 

  28. J. Lee, H.J. Bong, D. Kim, Y.S. Lee, Y. Choi, M.G. Lee, Met. Mater. Int. 26, 682 (2020)

    Article  CAS  Google Scholar 

  29. K. Wen, B.Q. Xiong, Y.G. Zhang, Z.H. Li, X.W. Li, S.H. Huang, L.Z. Yan, H.W. Yan, H.W. Liu, Met. Mater. Int. 24, 537 (2018)

    Article  CAS  Google Scholar 

  30. S.H. Kayani, J.G. Jung, M.S. Kim, K. Euh, Met. Mater. Int. 26, 1079 (2020)

    Article  CAS  Google Scholar 

  31. F.Q. Ran, L.H. Chai, K.Y. Gao, Z.R. Nie, Z.Y. Chen, Corros. Eng. Sci. Technol. 49, 712 (2014)

    Article  CAS  Google Scholar 

  32. I. Simsek, Anti-Corros. Method. M. 66, 683 (2019)

    Article  CAS  Google Scholar 

  33. G.S. Peng, K.H. Chen, S.Y. Chen, H.C. Fang, Mater. Corros. 64, 284 (2013)

    Article  CAS  Google Scholar 

  34. G. Qin, W.T. Xue, C.L. Fan, R.R. Chen, L. Wang, Y.Q. Su, H.S. Ding, J.J. Guo, Mater. Sci. Eng. A 710, 200 (2018)

    Article  CAS  Google Scholar 

  35. G.R. Li, H.M. Wang, P.S. Li, R. Zheng, Y.M. Li, Y.H. Cui, C.X. Peng, Y.T. Zhao, Adv. Mater. Res. 941–944, 462 (2014)

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the program for National Key Research and Development Plan (2017YFB1104000), the National Natural Science Foundation of China (51574167) and Science and Technology Program of Liaoning Provincial Department of Education (LJGD2020010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiming Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, R., Ma, S., Wang, K. et al. Effect of Cyclic Deep Cryogenic Treatment on Corrosion Resistance of 7075 Alloy. Met. Mater. Int. 28, 862–870 (2022). https://doi.org/10.1007/s12540-021-00975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00975-y

Keywords

Navigation