Skip to main content

Advertisement

Log in

Effect of Aging Treatments on the Mechanical and Corrosive Behaviors of Spray-Formed 7075 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanical properties, microstructure, exfoliation corrosion (EXCO), and intergranular corrosion (IGC) behaviors of the spray-formed 7075 aluminum alloy after T6, T73, retrogression (R), and re-aging (RRA) treatment, respectively, were studied by using tensile tester, transmission electron microscope, and scanning electron microscope. The results show that the T6 process can increase the ultimate tensile strength (UTS) up to 760 MPa, while it decreases the elongation, the EXCO, and the IGC resistance of the alloy. The T73 process can improve elongation, the EXCO, and the IGC resistance of the alloy. The corrosion resistance of the alloy can also be improved by R and RRA processes with retrogression times increase. The tiny precipitated phases distributed homogeneously in the matrix can increase the UTS. The close-connected discrete grain boundary phases (GBP) and the narrow precipitate free zones (PFZ) will lower the elongation, the EXCO, and the IGC resistance of the alloy. Contrarily, the discrete GBP and wide PFZ can improve the elongation, the EXCO, and the IGC resistance of the alloy. The EXCO and the IGC behaviors for the spray-formed 7075 alloy after different aging treatments have been established according to the standards of ASTM G34-2001 (2007) and ASTM G110-1992 (2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Sha and A. Cerezo, Early-Stage Precipitation in Al-Zn-Mg-Cu Alloy (7050), Acta Mater., 2004, 52, p 4503–4516

    Article  Google Scholar 

  2. S.L. George and R.D. Knutsen, Composition Segregation in Semi-solid Metal Cast AA7075 Aluminium Alloy, J. Mater. Sci., 2012, 47, p 4716–4725

    Article  Google Scholar 

  3. R.E. Ricker, E.U. Lee, R. Taylor, C. Lei, B. Pregger, and E. Lipnickas, Chloride Ion Activity and Susceptibility of Al Alloys 7075-T6 and 5083-H131 to Stress Corrosion Cracking, Metall. Mater. Trans. A, 2013, 44, p 1353–1364

    Article  Google Scholar 

  4. R.M. Su, Y.D. Qu, R.X. Li, and R.D. Li, Study of Ageing Treatment on Spray Forming Al-Zn-Mg-Cu Alloy, Appl. Mech. Mater., 2012, 217, p 1835–1838

    Article  Google Scholar 

  5. M. Jeyakumar, S. Kumar, and G.S. Gupta, Microstructure and Properties of the Spray-Formed and Extruded 7075 Al Alloy, Mater. Manuf. Process., 2010, 25, p 777–785

    Article  Google Scholar 

  6. J. Fang, P.C. Wong, K.A.R. Mitchell, and T. Foster, Observations Related to the Phosphating of Aluminium Alloy 7075-T6 Using a Spraying Technique, J. Mater. Sci., 1998, 33, p 1541–1547

    Article  Google Scholar 

  7. T. Ramgopal, P.I. Gouma, and G.S. Frankel, Role of Grain-Boundary Precipitates and Solute-Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150, Corrosion, 2002, 58, p 687–697

    Article  Google Scholar 

  8. M.J. Robinson, The Role of Wedging Stresses in the Exfoliation Corrosion of High Strength Aluminium Alloys, Corros. Sci., 1983, 23, p 887–899

    Article  Google Scholar 

  9. M.J. Robinson and N.C. Jackson, Exfoliation Corrosion of High Strength Al-Cu-Mg Alloys: Effect of Grain Structure, Br. Corros. J., 1999, 34, p 45–49

    Article  Google Scholar 

  10. D.J. Kelly and M.J. Robinson, Influence of Heat Treatment and Grain Shape on Exfoliation Corrosion of Al-Li Alloy 8090, Corrosion, 1993, 49, p 787–795

    Article  Google Scholar 

  11. M.J. Robinson, Mathematical Modelling of Exfoliation Corrosion in High Strength Aluminium Alloys, Corros. Sci., 1982, 22, p 775–790

    Article  Google Scholar 

  12. M.C. Reboul and J. Bouvaist, Exfoliation Corrosion Mechanisms in the 7020 Aluminium Alloy, Mater. Corros., 1979, 30, p 700–712

    Article  Google Scholar 

  13. R.H. Brown, W.L. Fink, and M.S. Hunter, Measurement of Irreversible Potentials as a Metallurgical Research Tool, Trans. AIME, 1941, 143, p 115–122

    Google Scholar 

  14. J.R. Galvele and S.M. de De Micheli, Mechanism of Intergranular Corrosion of Al-Cu Alloys, Corros. Sci., 1970, 10, p 795–807

    Article  Google Scholar 

  15. S. Maitra and G.C. English, Mechanism of Localized Corrosion of 7075 Alloy Plate, Metall. Trans. A, 1981, 12, p 535–541

    Article  Google Scholar 

  16. R.G. Buchheit, J.P. Moran, and G.E. Stoner, Electrochemical Behavior of the T1 (Al2CuLi) Intermetallic Compound and Its Role in Localized Corrosion of Al-2% Li-3% Cu Alloys, Corrosion, 1994, 50, p 120–130

    Article  Google Scholar 

  17. R.G. Buchheit, F.D. Wall, G.E. Stoner, and J.P. Moran, Anodic Dissolution-Based Mechanism for the Rapid Cracking, Preexposure Phenomenon Demonstrated by Aluminum-Lithium-Copper Alloys, Corrosion, 1995, 51, p 417–428

    Article  Google Scholar 

  18. A. Conde and J. De Damborenea, Evaluation of Exfoliation Susceptibility by Means of the Electrochemical Impedance Spectroscopy, Corros. Sci., 2000, 42, p 1363–1377

    Article  Google Scholar 

  19. T. Ramgopal, P.I. Gouma, and G.S. Frankel, Role of Grain-Boundary Precipitates and Solute-Depleted Zone on the Intergranular Corrosion of Aluminum Alloy 7150, Corrosion, 2002, 58, p 687–697

    Article  Google Scholar 

  20. L. Lin, Z. Liu, Y. Li, X. Han, and X. Chen, Effects of Severe Cold Rolling on Exfoliation Corrosion Behavior of Al-Zn-Mg-Cu-Cr Alloy, J. Mater. Eng. Perform., 2012, 21, p 1070–1075

    Article  Google Scholar 

  21. J. Wloka, T. Hack, and S. Virtanen, Influence of Temper and Surface Condition on the Exfoliation Behaviour of High Strength Al-Zn-Mg-Cu Alloys, Corros. Sci., 2007, 49, p 1437–1449

    Article  Google Scholar 

  22. M.J. Starink and S.C. Wang, A Model for the Yield Strength of Overaged Al-Zn-Mg-Cu Alloys, Acta Mater., 2003, 51, p 5131–5150

    Article  Google Scholar 

  23. E. Salamci, Directionality in the Mechanical Properties of Spray Cast and Extruded 7xxxx Series Aluminum Alloys, Turk. J. Eng. Environ. Sci., 2003, 27, p 169–176

    Google Scholar 

  24. F. Wang, B. Xiong, Y. Zhang, B. Zhu, H. Liu, Z. Wang, and X. He, Microstructure and Mechanical Properties of Spray-Deposited Al-10.8Zn-2.8Mg-1.9Cu Alloy After Two-Step Aging Treatment at 110 and 150°C, Mater. Charact., 2007, 58, p 82–86

    Article  Google Scholar 

  25. F. Wang, B. Xiong, Y. Zhang, B. Zhu, H. Liu, and X. He, Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Spray-Deposited Al-10.8Zn-2.8Mg-1.9Cu Alloy, Mater. Sci. Eng. A, 2008, 486, p 648–652

    Article  Google Scholar 

  26. A.F. Oliveira, Jr., M.C. De Barros, K.R. Cardoso, and D.N. Travessa, The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminium Alloys, Mater. Sci. Eng. A, 2004, 379, p 321–326

    Article  Google Scholar 

  27. Y.H. Cai, R.G. Liang, Z.P. Su, and J.S. Zhang, Microstructure of Spray Formed Al-Zn-Mg-Cu Alloy with Mn Addition, Trans. Nonferrous Met. Soc. China, 2011, 21(1), p 9–14

    Article  Google Scholar 

  28. P. Lengsfeld, J.A. Juarez-Islas, W.A. Cassada, and E.J. Lavernia, Microstructure and Mechanical Behavior of Spray Deposited Zn Modified 7XXX Series Al Alloys, Int. J. Rapid Solidif., 1995, 8, p 237–265

    Google Scholar 

  29. E. Salamci, Ageing Behaviour of Spray Cast Al-Zn-Mg-Cu Alloys, Turk. J. Eng. Environ. Sci., 2001, 25, p 681–686

    Google Scholar 

  30. E. Salamci, Mechanical Properties of Spray Cast 7XXX Series Aluminum Alloys, Turk. J. Eng. Environ. Sci., 2002, 26, p 345–352

    Google Scholar 

  31. H. Jiang and R.G. Faulkner, Modelling of Grain Boundary Segregation, Precipitation and Precipitate-Free Zones of High Strength Aluminium Alloys—I. The Model, Acta Mater., 1996, 44, p 1857–1864

    Article  Google Scholar 

  32. H. Jiang and R.G. Faulkner, Modelling of Grain Boundary Segregation, Precipitation and Precipitate-Free Zones of High Strength Aluminium Alloys—II. Application of the Models, Acta Mater., 1996, 44, p 1865–1871

    Article  Google Scholar 

  33. S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch, Correlations Between Intergranular Stress Corrosion Cracking, Grain-Boundary Microchemistry, and Grain-Boundary Electrochemistry for Al-Zn-Mg-Cu Alloys, Corros. Sci., 2010, 52, p 4073–4080

    Article  Google Scholar 

  34. T. Ramgopal, P. Schmutz, and G.S. Frankel, Electrochemical Behavior of Thin Film Analogs of Mg(Zn, Cu, Al)2, J. Electrochem. Soc., 2001, 148, p B348–B356

    Article  Google Scholar 

  35. R. Goswami, S. Lynch, N.J.H. Holroyd, S.P. Knight, and R.L. Holtz, Evolution of Grain Boundary Precipitates in Al 7075 upon Aging and Correlation with Stress Corrosion Cracking Behavior, Metall. Mater. Trans. A, 2013, 44, p 1268–1278

    Article  Google Scholar 

  36. D.A. Hardwick, A.W. Thompson, and I.M. Bernstein, The Effect of Copper Content and Heat Treatment on the Hydrogen Embrittlement of 7050-Type Alloys, Corros. Sci., 1988, 28, p 1127–1137

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Program for Liaoning Innovative Research Team in University (LT2012004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-dong Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Rm., Qu, Yd. & Li, Rd. Effect of Aging Treatments on the Mechanical and Corrosive Behaviors of Spray-Formed 7075 Alloy. J. of Materi Eng and Perform 23, 3842–3848 (2014). https://doi.org/10.1007/s11665-014-1186-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1186-2

Keywords

Navigation