Skip to main content
Log in

Failure with Strain Localization of Aluminum Alloy 7075 Sheets at Elevated Temperature and its Application to Two-Step Hybrid Forming

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, the onset of failure induced by severe strain at elevated temperature was numerically estimated with cross-formed empirical hardening law describing material softening. The hardening law can replicate the rate-sensitive behavior of aluminum alloy 7075 sheets (thickness of 2.0 mm) with initial hardening and progressive material deterioration caused by dynamic recrystallization, dynamic recovery, and micro-void development. The characterized material was applied to the two-step hybrid forming process consisting of a drawing at 400 °C followed by a pneumatic forming at 470 °C to produce a shock absorber housing with an extremely complex shape. The user-defined subroutine codes, VUMAT (ABAQUS/Explicit) and UMAT (ABAQUS/Standard), were sequentially utilized for the drawing and the pneumatic forming, respectively. The identified hardening parameters based on uniaxial tensile tests were validated by simulating the two-step hybrid forming process and compared with the conventional Voce type law (converging function) and the combined Swift-Voce type law (ever-increasing function) since they play a key role in accurately predicting the onset of failure induced by severe strain localization. Finally, simulation results are reasonably well matched with experiments in terms of the moment of failure occurrence, failure location, final blank shape, and thickness distribution.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. I.N. Fridlyander, V.G. Sister, O.E. Grushko, V.V. Berstenev, L.M. Sheveleva, L.A. Ivanova, Met. Sci. Heat Treat. 44, 365–370 (2002)

    Article  CAS  Google Scholar 

  2. M. Tisza, I. Czinege, Int. J. Lightweight Mater. Manuf. 1, 229–238 (2018)

    Google Scholar 

  3. E.S. de Argandona, L. Galdos, R. Ortubay, J. Mendiguren, X. Agirretxe, Comp. Methods Mater. Sci. 15, 51–57 (2015)

    Google Scholar 

  4. K. Zheng, Y. Dong, D. Zheng, J. Lin, T.A. Dean, J. Mater. Process. Tech. 268, 87–96 (2019)

    Article  CAS  Google Scholar 

  5. J. Lee, H.J. Bong, D. Kim, Y.-S. Lee, Y. Choi, M.-G. Lee, Met. Mater. Int. 26, 682–694 (2020)

    Article  Google Scholar 

  6. Y. Choi, J. Lee, S.S. Panicker, H.-K. Jin, S.K. Panda, M.-G. Lee, Int. J. Mech. Sci. 170, 105344 (2020). 

    Article  Google Scholar 

  7. A.J. Barnes, J. Mater. Eng. Perform 16, 440–454 (2007)

    Article  CAS  Google Scholar 

  8. P.A. Friedman, S.G. Luckey, W.B. Copple, R. Allor, C.E. Miller, C. Young, J. Mater. Eng. Perform. 13, 670–677 (2004)

    Article  CAS  Google Scholar 

  9. J. Liu, M.-J. Tan, Y. Aue-u-lan, A.E.W. Jarfors, K.-S. Fong, S. Castagne, Int. J. Adv. Manuf. Tech. 52, 123–129 (2011) 

    Article  Google Scholar 

  10. B. Kaushik, S. Basak, H.J. Choi, S.K. Panda, M.G. Lee, Influence of evolution in anisotropy during strain path change on failure limits of sheet metals. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00896-2

    Article  Google Scholar 

  11. M. Cockcroft, D. Latham, J. I. Met. 96, 33–39 (1968)

    CAS  Google Scholar 

  12. P. Brozzo, B. Deluca, R. Rendina, A new method for the prediction of formability limits in metal sheets in Proceedings of the 7th Biennal Conference of the International Deep Drawing Research group, Amsterdam, October 9-13, 1972

  13. S.E. Clift, P. Hartley, C. Sturgess, G. Rowe, Int. J. Mech. Sci. 32, 1–17 (1990)

    Article  Google Scholar 

  14. K. Chung, H. Kim, C. Lee, Int. J. Plasticity 58, 3–34 (2014)

    Article  Google Scholar 

  15. K. Chung, C. Lee, H. Kim, Int. J. Plasticity 58, 35–65 (2014)

    Article  Google Scholar 

  16. ​Y. Koh, D. Kim, D.-Y. Seok, J. Bak, S.-W. Kim, Y.-S. Lee, K. Chung, Int. J. Mech. Sci. 93, 204–217 (2015)

    Article  Google Scholar 

  17. W. Kim, T.B. Stoughton, M.-G. Lee, Int. J. Mech. Sci. 193, 106146 (2020)

    Article  Google Scholar 

  18. H. Kim, Characterization method for hardening and strain-rate sensitivity at elevated temperature based on uniaxial tension and creep tests, Ph.D. thesis, Seoul National University (2015)

  19. H. Kim, J.W. Yoon, K. Chung, M.-G. Lee, Int. J. Mech. Sci. 187, 105913 (2020)

    Article  Google Scholar 

  20. E. Voce, J. I. Met. 74, 537–562 (1948)

  21. W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  22. D.-Y. Seok, D. Kim, S.-W. Kim, J. Bak, Y.-S. Lee, K. Chung, Met. Mater. Int. 21, 54–71 (2015)

    Article  CAS  Google Scholar 

  23. T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490, 411–420 (2008)

    Article  Google Scholar 

  24. J.C. Tan, M.J. Tan, Mater. Sci. Eng. A 339, 124–132 (2003)

    Article  Google Scholar 

  25. X.-Y. Yang, Z.-S. Ji, H. Miura, T. Sakai, T. Nonferr. Metal. Soc. 19, 55–60 (2009)

    Article  Google Scholar 

  26. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, Mater. Trans. 44, 445–451 (2003)

    Article  CAS  Google Scholar 

  27. E.H. Lee, J. Appl. Mech. 36, 1–6 (1969)

    Article  Google Scholar 

  28. ASM Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (ASM International, Materials Park, OH, 1990)

  29. K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, C. Kim, Int. J. Plasticity 27, 1485–1511 (2011)

    Article  CAS  Google Scholar 

  30. L. Ying, T. Gao, H. Rong, X. Han, P. Hu, W. Hou, J. Alloy. Compd. 802, 675–693 (2019)

    Article  CAS  Google Scholar 

  31. W. Xiao, B. Wang, K. Zheng, Int. J. Adv. Manuf. Tech. 92, 3299–3309 (2017)

    Article  Google Scholar 

  32. T. Gao, L. Ying, P. Hu, X. Han, H. Rong, Y. Wu, J. Sun, J. Manuf. Process. 50, 1–16 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Industrial Technology Innovation Program (No.10077492) funded by the Ministry of Trade, Industry and Energy (MOTIE) and the Fundamental Research Program of the Korea Institute of Materials Science (PNK6850) funded by the Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daeyong Kim.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, JH., Kim, H., Kim, W. et al. Failure with Strain Localization of Aluminum Alloy 7075 Sheets at Elevated Temperature and its Application to Two-Step Hybrid Forming. Met. Mater. Int. 28, 871–886 (2022). https://doi.org/10.1007/s12540-020-00949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00949-6

Keywords

Navigation