Skip to main content
Log in

Enhancement of Thermal Stability and Bending Ductility of Fe–Si–B Amorphous Ribbons with Minor Y Addition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The influences of minor Y addition on the thermal stability, crystallization behavior, magnetic property and bending ductility of Fe–Si–B amorphous ribbons have been systematically investigated. The results show that all the ribbons with Y addition are fully amorphous structure, and the introduction of Y can enhance the glass forming ability of Fe–Si–B amorphous alloy. With Y addition, crystallization temperature of the first and second phase shift to high temperature side, the temperature interval between the two crystallization peaks are enlarged, the third phase transitions process of Fe–Si–B amorphous alloy with Y addition corresponds to the precipitation of Fe3B phase. The activation energy of the first and second phase calculated by Kissinger’s formula increased with Y addition. Appropriate Y addition is beneficial for Ms. The measured coercivity Hc gradually decreased with the Y addition increased. The amorphous alloys exhibit good bending ductility in the quenched state. The ductile to brittle temperature increase to 300 °C with 1 at% Y addition. Furthermore, the mechanism of ductile to brittle for amorphous alloy was discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Ogawa, M. Naoe, Y. Yoshizawa, R. Hasegawa, J. Magn. Magn. Mater. 304(2), 675–677 (2006)

    Article  Google Scholar 

  2. Y. Han, F. Kong, C. Chang, J. Mater. Res. 30(04), 547–555 (2015)

    Article  CAS  Google Scholar 

  3. A. Wang, C. Zhao, H. Men, J. Alloys Compd. 630, 209–213 (2015)

    Article  CAS  Google Scholar 

  4. Y.Q. Cheng, E. Ma, Prog. Mater Sci. 56(4), 379–473 (2011)

    Article  CAS  Google Scholar 

  5. A. Makino, T. Kubota, K. Yubuta, A. Inoue, A. Urata, H. Matsumoto, S. Yoshida, J. Appl. Phys. 109, 07A302 (2011)

    Article  Google Scholar 

  6. C. Suryanarayana, A. Inoue, Int. Mater. Rev. 58(3), 131–166 (2013)

    Article  CAS  Google Scholar 

  7. W.H. Wang, Prog. Mater Sci. 52(4), 540–596 (2007)

    Article  CAS  Google Scholar 

  8. A. Inoue, Acta Mater. 48(1), 279–306 (2000)

    Article  CAS  Google Scholar 

  9. J. Shen, Q. Chen, J. Sun, Appl. Phys. Lett. 86(15), 279 (2005)

    Article  Google Scholar 

  10. Q. Chen, D. Zhang, J. Shen, J. Alloys Compd. 427(1–2), 190–193 (2007)

    Article  CAS  Google Scholar 

  11. S.L. Lin, S.F. Chen, J.K. Chen, Intermetallics 18(10), 1828 (2010)

    Article  Google Scholar 

  12. W. Li, C.X. Xie, Y.Z. Yang, J. Non-Cryst. Solids 489, 1–5 (2018)

    Article  CAS  Google Scholar 

  13. D.G. Jiang, Adv. Mater. Res. 152–153, 587–591 (2010)

    Article  Google Scholar 

  14. G.T. Zheng, D.G. Jiang, Adv. Mater. Res. 415–417, 566–570 (2011)

    Article  Google Scholar 

  15. L. Ma, L. Wang, T. Zhang, Mater. Res. Bull. 34(6), 915–920 (1999)

    Article  CAS  Google Scholar 

  16. X.M. Huang, C.T. Chang, Z.Y. Chang, Mater. Sci. Eng. A 527(7–8), 1952–1956 (2010)

    Article  Google Scholar 

  17. I. Kucuk, M. Aykol, O. Uzun, J. Alloys Compd. 509(5), 2330–2337 (2011)

    Article  Google Scholar 

  18. A. Inoue, T. Zhang, E. Matsubara, Mater. Trans. JIM 32(3), 201–206 (1991)

    Article  CAS  Google Scholar 

  19. I. Betancourt, S. Baez, J. Non-Cryst. Solids 355(22-23), 1202–1205 (2009)

    Article  CAS  Google Scholar 

  20. J.J. Han, W.Y. Wang, X.J. Liu, C.P. Wang, X.D. Hui, Z.K. Liu, Acta Mater. 77, 96–110 (2014)

    Article  CAS  Google Scholar 

  21. R.J. Hebert, Nanocrystals in Metallic Glasses, InTech (2011)

  22. A. Inoue, A. Takeuchi, Acta Mater. 59(6), 2243–2267 (2011)

    Article  CAS  Google Scholar 

  23. A.R. Miedema, P.F. de Châtel, F.R. de Boer, Physica B+C 100(1), 1–28 (1980)

    Article  CAS  Google Scholar 

  24. P.J. Spencer, Thermochim. Acta 314(1–2), 1–21 (1998)

    Article  CAS  Google Scholar 

  25. A. Takeuchi, A. Inoue, Mater. Trans. 46(12), 2817 (2005)

    Article  CAS  Google Scholar 

  26. B. Dong, S. Zhou, J. Qin, Prog. Nat. Sci. 28(6), 696–703 (2018)

    Article  CAS  Google Scholar 

  27. N. Eliaz, D. Eliezer, Metall. Mater. Trans. A 31(10), 2517 (2000)

    Article  Google Scholar 

  28. W.M. Wang, S.F. Jin, J.T. Zhang, T. Huang, L. Wang, Physica B 404(20), 3413–3416 (2009)

    Article  CAS  Google Scholar 

  29. P.L. Lopez-Alemany, J. Vazquez, P. Villares, R. Jimenez-Garay, J. Non-Cryst. Solids 274, 249–256 (2000)

    Article  CAS  Google Scholar 

  30. J. Wang, H.C. Kou, J.S. Li, X.F. Gu, L.Q. Xing, J. Alloys Compd. 479, 835–839 (2009)

    Article  CAS  Google Scholar 

  31. Y. Zhang, B. Yan, Y. Yang, J. Alloys Compd. 574, 556–559 (2013)

    Article  CAS  Google Scholar 

  32. Q.L. Ma, Y. Bao, G.R. Zhang, Adv. Mater. Res. 482–484, 2365–2370 (2012)

    Article  Google Scholar 

  33. H.Y. Kim, J. Mate. Sci. 42(8), 2675–2677 (2007)

    Article  CAS  Google Scholar 

  34. F.L. Kong, C.T. Chang, A. Inoue, E. Shalaan, J. Alloys Compd. 615, 163–166 (2014)

    Article  CAS  Google Scholar 

  35. Y. Han, J. Ding, F.L. Kong, J. Alloys Compd. 691, 364–368 (2016)

    Article  Google Scholar 

  36. I.A. Figueroa, I. Betancourt, G. Lara, J. Non-Cryst. Solids 351(37), 3075–3080 (2005)

    Article  CAS  Google Scholar 

  37. C. Fan, P.K. Liaw, C.T. Liu, Intermetallics 17, 86–87 (2009)

    Article  CAS  Google Scholar 

  38. A. Argon, Acta Metall. 27, 47–58 (1979)

    Article  CAS  Google Scholar 

  39. C. Schuh, T. Hufnagel, U. Ramamurty, Acta Mater. 55(12), 4067–4109 (2007)

    Article  CAS  Google Scholar 

  40. A. Inoue, T. Masumoto, H. Kimura, Sci. Rep. Inst. Tohoku Univ. 27, 159–171 (1979)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Civic key scientific and technological project (Ningbo, Zhejiang province, Grant Number: 2017CX1CX01051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Dong or Mi Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Wu, X. & Yan, M. Enhancement of Thermal Stability and Bending Ductility of Fe–Si–B Amorphous Ribbons with Minor Y Addition. Met. Mater. Int. 27, 4286–4293 (2021). https://doi.org/10.1007/s12540-020-00720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00720-x

Keywords

Navigation