Skip to main content
Log in

Hydrogen Behavior in Ti-Added Reduced Activation Ferritic-Martensitic Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Hydrogen behavior and corresponding mechanical degradation were examined in TaTi-RAFM and EUROFER97 steels. Increased Ta content with Ti addition decelerates the hydrogen diffusion but increases the solubility in the lattice. It is mainly led by the higher fraction of Ta-rich MC carbides and dislocation density in TaTi-RAFM steel. Overall activation energy of hydrogen trapping of investigated steels is evaluated to be 25.3 ~ 25.6 kJ/mol in the tempered condition. The activation energy increases to nearly 30 kJ/mol when the steels are re-austenitized and quenched. Higher activation energy with increased dislocation density indicates that the dislocation provides for trap site with higher activation energy than Ta-rich MC carbide. Mechanical degradation by hydrogen with respect to the yield strength, tensile strength and uniform elongation could not be observed in all investigated steels. The presence of hydrogen only has influence on the loss of post-uniform elongation. For a given charging time, the loss of post-uniform elongation is more remarkable in TaTi-RAFM steel due to the larger hydrogen uptake.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Barabash, T.I.I. Team, A. Peacock, S. Fabritsiev, G. Kalinin, S. Zinkle, A. Rowcliffe, J.-W. Rensman, A. Tavassoli, P. Marmy, J. Nucl. Mater. 367, 21–32 (2007)

    Article  Google Scholar 

  2. D. Steiner, Nuclear Applications and Technology 9, 83–92 (1970)

    Article  CAS  Google Scholar 

  3. Y. Wu, J. Nucl. Mater. 386, 122–126 (2009)

    Article  Google Scholar 

  4. S.J. Zinkle, J.T. Busby, Mater. Today 12, 12–19 (2009)

    Article  CAS  Google Scholar 

  5. G. Esteban, A. Perujo, K. Douglas, L. Sedano, J. Nucl. Mater. 281, 34–41 (2000)

    Article  CAS  Google Scholar 

  6. G. Esteban, A. Pena, I. Urra, F. Legarda, B. Riccardi, J. Nucl. Mater. 367, 473–477 (2007)

    Article  Google Scholar 

  7. A. Aiello, I. Ricapito, G. Benamati, R. Valentini, Fusion Sci. Technol. 41, 872–876 (2002)

    Article  CAS  Google Scholar 

  8. Y. Yagodzinskyy, E. Malitckii, M. Ganchenkova, S. Binyukova, O. Emelyanova, T. Saukkonen, H. Hänninen, R. Lindau, P. Vladimirov, A. Moeslang, J. Nucl. Mater. 444, 435–440 (2014)

    Article  CAS  Google Scholar 

  9. M. Beghini, G. Benamati, L. Bertini, I. Ricapito, R. Valentini, J. Nucl. Mater. 288, 1–6 (2001)

    Article  CAS  Google Scholar 

  10. C.-H. Lee, J. Moon, M.-G. Park, T.-H. Lee, M.-H. Jang, H.C. Kim, D.-W. Suh, J. Nucl. Mater. 455, 421–425 (2014)

    Article  CAS  Google Scholar 

  11. C.-H. Lee, J.-Y. Park, W.-K. Seol, J. Moon, T.-H. Lee, N.H. Kang, H.C. Kim, Fusion Eng. Des. 124, 953–957 (2017)

    Article  CAS  Google Scholar 

  12. J. Heo, S. Kim, H. Guim, H.-H. Jin, J. Moon, C.-H. Lee, C. Shin, J. Nucl. Mater. 512, 184–192 (2018)

    Article  CAS  Google Scholar 

  13. H.K. Kim, J.W. Lee, J. Moon, C.H. Lee, H.U. Hong, J. Nucl. Mater. 500, 327–336 (2018)

    Article  CAS  Google Scholar 

  14. M. Devanathan, Z. Stachurski, Proc. R. Soc. Lond. A 270, 90–102 (1962)

    Article  CAS  Google Scholar 

  15. N. Boes, H. Züchner, J. Less Common Met. 49, 223–240 (1976)

    Article  CAS  Google Scholar 

  16. S.J. Kim, H.S. Seo, K.Y. Kim, Met. Mater. Int. 21, 666–672 (2015)

    Article  CAS  Google Scholar 

  17. E. ISO, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique. Brussels: European Committee for Standardization

  18. D. Kim, G.H. Jang, T. Lee, C.S. Lee, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00514-w

    Article  Google Scholar 

  19. H.E. Kissinger, Anal. Chem. 29, 1702–1706 (1957)

    Article  CAS  Google Scholar 

  20. J. Lu, J.B. Wiskel, O. Omotoso, H. Henein, D.G. Ivey, Metall. Mater. Trans. A 42, 1767–1784 (2011)

    Article  CAS  Google Scholar 

  21. A. Paúl, A. Beirante, N. Franco, E. Alves, J.A. Odriozola, in: Materials science forum, pp. 500–504. Trans Tech Publications

  22. R. Schäublin, P. Spätig, M. Victoria, J. Nucl. Mater. 258, 1178–1182 (1998)

    Article  Google Scholar 

  23. C. Pandey, M. Mahapatra, P. Kumar, A. Giri, Met. Mater. Int. 23, 900–914 (2017)

    Article  CAS  Google Scholar 

  24. H. Ma, S.-L. Liao, S.-F. Wang, J. Iron. Steel Res. Int. 21, 702–709 (2014)

    Article  CAS  Google Scholar 

  25. W. Choo, J.Y. Lee, J. Mater. Sci. 17, 1930–1938 (1982)

    Article  CAS  Google Scholar 

  26. F. Wei, T. Hara, K. Tsuzaki, Metall. Mater. Trans. B 35, 587–597 (2004)

    Article  Google Scholar 

  27. G. Jl, C. Kd, ISIJ Int. 42, 1560–1564 (2002)

    Article  Google Scholar 

  28. T. Depover, K. Verbeken, Corros. Sci. 112, 308–326 (2016)

    Article  CAS  Google Scholar 

  29. M. Mohtadi-Bonab, H. Ghesmati-Kucheki, Met. Mater. Int. 25, 1109–1134 (2019)

    Article  CAS  Google Scholar 

  30. H. Lee, J.-Y. Lee, Acta Metall. 32, 131–136 (1984)

    Article  CAS  Google Scholar 

  31. E.J. Song, S.-W. Baek, S.H. Nahm, D.-W. Suh, Met. Mater. Int. 24, 532–536 (2018)

    Article  CAS  Google Scholar 

  32. E. Wallaert, T. Depover, M. Arafin, K. Verbeken, Metall. Mater. Trans. A 45, 2412–2420 (2014)

    Article  CAS  Google Scholar 

  33. T. Shintani, Y. Murata, Acta Mater. 59, 4314–4322 (2011)

    Article  CAS  Google Scholar 

  34. Z. Cong, Y. Murata, Mater. Trans. 52, 2151–2154 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Fundamental Research Program of the Korea Institute of Materials Science (POC3380)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, KM., Lee, D.G., Moon, J. et al. Hydrogen Behavior in Ti-Added Reduced Activation Ferritic-Martensitic Steels. Met. Mater. Int. 27, 425–435 (2021). https://doi.org/10.1007/s12540-019-00561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00561-3

Keywords

Navigation