Skip to main content
Log in

Microstructure and Mechanical Properties of the Commercially Pure Copper Tube After Processing by Hydrostatic Tube Cyclic Expansion Extrusion (HTCEE)

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A newly introduced severe plastic deformation process for the production of relatively long ultrafine-grained (UFG) tubes, hydrostatic tube cyclic expansion extrusion (HTCEE), was applied up to two passes on commercially pure copper tubes to study the mechanical characteristics and microstructure of the HTCEE processed samples. In HTCEE process, the pressurized hydraulic fluid around the piece has a main role in the reduction of the friction load leading to a decrease in the required pressing force. After the second pass of HTCEE, a UFG microstructure with an average grain size of ~ 127 nm was observed. In two-pass HTCEE processed tub, more refined and also more homogeneous microstructure was achieved compared to the one-pass HTCEE processed and annealed samples. This type of microstructure caused the increment of yield strength from 75 to 310 MPa, (~ 4.13 times higher), ultimate tensile strength from 207 to 386 MPa (~ 1.86 times higher) and microhardness from ~ 59 to ~ 143 Hv (~ 2.42 times higher). Simultaneously, elongation to failure was lessened from ~ 55 to 37%. In other words, a remarkable increase in the strength and hardness was attained besides a low loss of ductility. Also, microhardness measurements revealed a more homogeneous distribution of hardness in the two-pass processed sample. SEM fractography analysis demonstrated that mostly ductile fracture happened in the HTCEE processed samples. Also, the influence of the HTCEE process on the equivalent plastic strain and also the required force was examined via FEM simulation using Abaqus software. It seems that HTCEE process, by applying low deforming force, possesses the potential of production of tubes with long length having a simultaneous good ductility and strength.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W. Xia, Z. Chen, D. Chen, S. Zhu, J. Mater. Process. Technol. 209, 26–31 (2009)

    CAS  Google Scholar 

  2. A. Al-Zubaydi, R.B. Figueiredo, Y. Huang, T.G. Langdon, J. Mater. Sci. 48, 4661–4670 (2013)

    CAS  Google Scholar 

  3. M. Eftekhari, G. Faraji, S. Nikbakht, R. Rashed, R. Sharifzadeh, R. Hildyard, M. Mohammadpour, Mater. Sci. Eng., A 703, 551–558 (2017)

    CAS  Google Scholar 

  4. N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Mater. Sci. Eng., A 528, 7537–7540 (2011)

    CAS  Google Scholar 

  5. M.T. Pérez-Prado, O. Ruano, Scripta Mater. 51, 1093–1097 (2004)

    Google Scholar 

  6. Q. Wang, Y. Chen, M. Liu, J. Lin, H.J. Roven, Mater. Sci. Eng., A 527, 2265–2273 (2010)

    Google Scholar 

  7. M. Mohebbi, A. Akbarzadeh, Mater. Sci. Eng., A 528, 180–188 (2010)

    Google Scholar 

  8. M. Arzaghi, J. Fundenberger, L. Toth, R. Arruffat, L. Faure, B. Beausir, X. Sauvage, Acta Mater. 60, 4393–4408 (2012)

    CAS  Google Scholar 

  9. G. Faraji, P. Yavari, S. Aghdamifar, M.M. Mashhadi, J. Mater. Sci. Technol. 30, 134–138 (2014)

    CAS  Google Scholar 

  10. A. Babaei, M. Mashhadi, Prog. Nat. Sci. Mater. Int. 24, 623–630 (2014)

    CAS  Google Scholar 

  11. M. Eftekhari, A. Fata, G. Faraji, M. Mashhadi, J. Alloy. Compd. 742, 442–453 (2018)

    CAS  Google Scholar 

  12. J. Skiba, W. Pachla, A. Mazur, S. Przybysz, M. Kulczyk, M. Przybysz, M. Wróblewska, J. Mater. Process. Technol. 214, 67–74 (2014)

    CAS  Google Scholar 

  13. S. Jamali, G. Faraji, K. Abrinia, Int. J. Adv. Manuf. Technol. 88, 291–301 (2017)

    Google Scholar 

  14. B. Manafi, V. Shatermashhadi, K. Abrinia, G. Faraji, M. Sanei, Int. J. Adv. Manuf. Technol. 82, 1823–1830 (2016)

    Google Scholar 

  15. F. Samadpour, G. Faraji, P. Babaie, S. Bewsher, M. Mohammadpour, Mater. Sci. Eng., A 718, 412–417 (2018)

    CAS  Google Scholar 

  16. M.M. Savarabadi, G. Faraji, E. Zalnezhad, J. Alloy. Compd. 785, 163–168 (2019)

    Google Scholar 

  17. G. Faraji, M.M. Savarabadi, US Patent App. 15/989, 141 (2018)

  18. G. Faraji, H. Kim, Mater. Sci. Technol. 33, 905–923 (2017)

    CAS  Google Scholar 

  19. J.-C. Hung, C. Hung, J. Mater. Process. Technol. 104, 226–235 (2000)

    Google Scholar 

  20. I. Balasundar, T. Raghu, Mater. Des. 31, 449–457 (2010)

    Google Scholar 

  21. A. Babaei, M. Mashhadi, H. Jafarzadeh, J. Mater. Sci. 49, 3158–3165 (2014)

    CAS  Google Scholar 

  22. D.H. Shin, I. Kim, J. Kim, Y.T. Zhu, Mater. Sci. Eng., A 334, 239–245 (2002)

    Google Scholar 

  23. P.S. Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty, Trans. Nonferrous Met. Soc. China 25, 1353–1366 (2015)

    CAS  Google Scholar 

  24. H.T. Kashi, M. Bahrami, J.S. Karami, G. Faraji, Iran. J. Mater. Sci. Eng. 14, 32–40 (2017)

    Google Scholar 

  25. N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C. Gu, B. Beausir, L. Kommel, Mater. Sci. Eng., A 628, 423–432 (2015)

    CAS  Google Scholar 

  26. S. Amani, G. Faraji, K. Abrinia, J. Manuf. Process. 28, 197–208 (2017)

    Google Scholar 

  27. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, JOM 58, 33–39 (2006)

    Google Scholar 

  28. E. Bagherpour, F. Qods, R. Ebrahimi, H. Miyamoto, Mater. Sci. Eng., A 679, 465–475 (2017)

    CAS  Google Scholar 

  29. I. Semenova, A. Polyakov, G. Raab, T. Lowe, R. Valiev, J. Mater. Sci. 47, 7777–7781 (2012)

    CAS  Google Scholar 

  30. F. Salimyanfard, M.R. Toroghinejad, F. Ashrafizadeh, M. Jafari, Mater. Sci. Eng., A 528, 5348–5355 (2011)

    CAS  Google Scholar 

  31. D. Fang, Q. Duan, N. Zhao, J. Li, S. Wu, Z. Zhang, Mater. Sci. Eng., A 459, 137–144 (2007)

    Google Scholar 

  32. V. Tavakkoli, M. Afrasiab, G. Faraji, M. Mashhadi, Mater. Sci. Eng., A 625, 50–55 (2015)

    CAS  Google Scholar 

  33. M. Phaniraj, M. Prasad, A. Chokshi, Mater. Sci. Eng., A 463, 231–237 (2007)

    Google Scholar 

  34. M. Ebrahimi, F. Djavanroodi, Prog. Nat. Sci. Mater. Int. 24, 68–74 (2014)

    CAS  Google Scholar 

  35. A. Babaei, G. Faraji, M. Mashhadi, M. Hamdi, Mater. Sci. Eng., A 558, 150–157 (2012)

    CAS  Google Scholar 

  36. Y. Estrin, A. Vinogradov, Acta Mater. 61, 782–817 (2013)

    CAS  Google Scholar 

  37. M.Y. Alawadhi, S. Sabbaghianrad, Y. Huang, T.G. Langdon, J. Mater. Res. Technol. 6, 369–377 (2017)

    CAS  Google Scholar 

  38. N. Lugo, N. Llorca, J. Cabrera, Z. Horita, Mater. Sci. Eng., A 477, 366–371 (2008)

    Google Scholar 

  39. K. Edalati, T. Fujioka, Z. Horita, Mater. Sci. Eng., A 497, 168–173 (2008)

    Google Scholar 

  40. S.R. Bahadori, K. Dehghani, F. Bakhshandeh, Mater. Sci. Eng., A 583, 36–42 (2013)

    Google Scholar 

  41. A. Fattah-alhosseini, O. Imantalab, Y. Mazaheri, M. Keshavarz, Mater. Sci. Eng., A 650, 8–14 (2016)

    CAS  Google Scholar 

  42. G. Raab, E. Soshnikova, R. Valiev, Mater. Sci. Eng., A 387, 674–677 (2004)

    Google Scholar 

  43. S. Nikbakht, M. Eftekhari, G. Faraji, Modares Mech. Eng. 17, 453–461 (2017)

    Google Scholar 

  44. A. Fata, M. Eftekhari, G. Faraji, M.M. Mashhadi, J. Mater. Eng. Perform. 27, 2330–2337 (2018)

    CAS  Google Scholar 

  45. A. Azimi, S. Tutunchilar, G. Faraji, M.B. Givi, Mater. Des. 42, 388–394 (2012)

    CAS  Google Scholar 

  46. M. Janeček, J. Čížek, M. Dopita, R. Král, O. Srba, Materials Science Forum (Trans Tech Publications Inc., Zürich, 2008), pp. 440–445

    Google Scholar 

  47. K. Hajizadeh, B. Eghbali, K. Topolski, K. Kurzydlowski, Mater. Chem. Phys. 143, 1032–1038 (2014)

    CAS  Google Scholar 

  48. Y. Wang, E. Ma, Acta Mater. 52, 1699–1709 (2004)

    CAS  Google Scholar 

  49. R. Kocich, M. Greger, M. Kursa, I. Szurman, A. Macháčková, Mater. Sci. Eng., A 527, 6386–6392 (2010)

    Google Scholar 

  50. K. Edalati, K. Imamura, T. Kiss, Z. Horita, Mater. Trans. 53, 123–127 (2012)

    CAS  Google Scholar 

  51. G. Faraji, A. Babaei, M.M. Mashhadi, K. Abrinia, Mater. Lett. 77, 82–85 (2012)

    CAS  Google Scholar 

  52. A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Arch. Metall. Mater. 62, 159–166 (2017)

    CAS  Google Scholar 

  53. H. Jafarzadeh, K. Abrinia, Mater. Charact. 102, 1–8 (2015)

    CAS  Google Scholar 

  54. J. Deng, Y. Lin, S.-S. Li, J. Chen, Y. Ding, Mater. Des. 49, 209–219 (2013)

    CAS  Google Scholar 

  55. R. Artan, A. Tepe, Eur. J. Mech. A/Solids 27, 469–477 (2008)

    Google Scholar 

  56. J. Maciejewski, H. Kopeć, H. Petryk, Eng. Trans. 55, 197–216 (2007)

    Google Scholar 

  57. M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, M. Mabuchi, Mater. Sci. Eng., A 457, 120–126 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motallebi Savarabadi, M., Faraji, G. & Eftekhari, M. Microstructure and Mechanical Properties of the Commercially Pure Copper Tube After Processing by Hydrostatic Tube Cyclic Expansion Extrusion (HTCEE). Met. Mater. Int. 27, 1686–1700 (2021). https://doi.org/10.1007/s12540-019-00525-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00525-7

Keywords

Navigation