Skip to main content
Log in

Formation of Metastable Aluminides in Al–Sc–Ti (Zr, Hf) Cast Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of the ternary alloys composition and overheating of their melts (at 100–370 K above the liquidus temperature) on the morphology and composition of aluminides in the Al–Sc–Ti, Al–Sc–Zr, Al–Sc–Hf systems were investigated. It was shown that during the crystallization of these melts under certain conditions, the primary precipitated phase are the complex aluminides Al3(ScxZr1−x), Al3(ScxTi1−x), Al3(ScxHf1−x) having a metastable cubic lattice with L12 structure, which matches the α-Al structural type. The variety of growth forms of aluminides is explained by a combination of a number of factors: the magnitude of overheating of the melt, the difference in the diffusion coefficients of transition metals, and the local concentration of transition metals in the respective growth zones.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Li, H. Jiang, Y. Wang, D. Zhang, D. Yan, L. Rong, Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al–Zn–Mg alloy. J. Mater. Sci. Technol. 34(7), 1172–1179 (2018)

    Article  Google Scholar 

  2. J. Zhang, H. Wang, D. Yi, B. Wang, H. Wang, Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables. Mater. Charact. 145, 126–134 (2018)

    Article  CAS  Google Scholar 

  3. S.H. Wu, P. Zhang, D. Shao, P.M. Cheng, J. Kuang, K. Wu, J.Y. Zhang, G. Liu, J. Sun, Show more grain size-dependent Sc microalloying effect on the yield strength-pitting corrosion correlation in Al–Cu alloys. Mater. Sci. Eng. A 721(4), 200–214 (2018)

    Article  CAS  Google Scholar 

  4. N. Belov, E. Naumova, T. Akopyan, Effect of 0.3% Sc on microstructure, phase composition and hardening of Al–Ca–Si eutectic alloys. Trans. Nonferrous Metals Soc. China 27(4), 741–746 (2017)

    Article  CAS  Google Scholar 

  5. D. Erdeniz, W. Nasim, J. Malik, A.R. Yost, S. Park, A. De Luca, N.Q. Vo, I. Karaman, B. Mansoor, D.N. Seidman, D.C. Dunand, Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al–Er–Sc–Zr–Si alloys. Acta Mater. 124, 501–512 (2017)

    Article  CAS  Google Scholar 

  6. J.H. Li, M. Wiessner, M. Albu, S. Wurster, B. Sartory, F. Hofer, P. Schumacher, Correlative characterization of primary Al3(Sc, Zr) phase in an Al–Zn–Mg based alloy. Mater. Charact. 102, 62–70 (2015)

    Article  CAS  Google Scholar 

  7. S. Saumitra, T.Z. Todorova, J.W. Zwanziger, Temperature dependent lattice misfit and coherency of Al3X (X = Sc, Zr, Ti and Nb) particles in an Al matrix. Acta Mater. 89, 109–115 (2015)

    Article  Google Scholar 

  8. T. Dorin, M. Ramajayam, J. Lamb, T. Langan, Effect of Sc and Zr additions on the microstructure/strength of Al–Cu binary alloys. Mater. Sci. Eng. A 707, 58–64 (2017)

    Article  CAS  Google Scholar 

  9. H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, K. Marthinsen, The formation of Al3(ScxZryHf1−x−y)-dispersoids in aluminium alloys. Mater. Sci. Eng. A 421, 154–160 (2006)

    Article  Google Scholar 

  10. H. Hallem, B. Forbord, K. Marthinsen, An investigation of dilute Al–Hf and Al–Hf–Si alloys. Mater. Sci. Eng. A 387–389, 940–943 (2004)

    Article  Google Scholar 

  11. A.F. Norman, P.B. Prangnell, R.S. McEwen, The solidification behavior of dilute aluminium–scandium alloys. Acta Mater. 46(16), 5715–5732 (1998)

    Article  CAS  Google Scholar 

  12. S. Srinivasan, P.B. Desch, R.B. Schwarz, Metastable phases in the Al3X (X = Ti, Zr, and Hf) intermetallic system. Scripta Metall. Mater. 25(11), 2513–2516 (1991)

    Article  CAS  Google Scholar 

  13. I.G. Brodova, I.V. Polents, V.O. Esin, E.M. Lobov, On the formation of the cast structure of supercooled Al–Ti alloys. Phys. Metals Metall. 73(1), 63–67 (1992)

    Google Scholar 

  14. P. Malek, M. Janecek, B. Smola, P. Bartuska, J. Plestil, Structure and properties of rapidly solidified Al–Zr–Ti alloys. J. Mater. Sci. 35, 2625–2633 (2000)

    Article  CAS  Google Scholar 

  15. A.F. Norman, P. Tsakiropoulos, Rapid solidification of Al–Hf alloys—solidification, microstructures and decomposition of solid-solutions. Int. J. Rapid Solid 6(3–4), 185–213 (1991)

    CAS  Google Scholar 

  16. E.A. Popova, A.B. Shubin, P.V. Kotenkov, E.A. Pastukhov, L.E. Bodrova, O.M. Fedorova, Al–Ti–Zr master alloys: structure formation. Russ. Metall. (Metally) 2012(5), 357–361 (2012)

    Article  Google Scholar 

  17. E.A. Popova, P.V. Kotenkov, E.A. Pastukhov, A.B. Shubin, Master alloys Al–Sc–Zr, Al–Sc–Ti, and Al–Ti–Zr: their manufacture, composition, and structure. Russ. Metall. (Metally) 2013(8), 590–594 (2013)

    Article  Google Scholar 

  18. E.A. Popova, A.B. Shubin, P.V. Kotenkov, L.E. Bodrova, A.V. Dolmatov, E.A. Pastukhov, N.A. Vatolin, Al–Sc–Zr Master alloy and estimation of its modifying capacity. Russ. Metall. (Metally) 2011(8), 715–718 (2011)

    Article  Google Scholar 

  19. E.A. Popova, P.V. Kotenkov, E.A. Pastukhov, Synergetic effect in modifying with master alloys having an aluminide cubic structure. Russ. Metall. (Metally) 2016(2), 189–193 (2016)

    Google Scholar 

  20. J.L. Murray, The Al–Sc (Aluminum–Scandium) system. J. Phase. Equil. 19(4), 380–384 (1998)

    Article  CAS  Google Scholar 

  21. K.E. Knipling, D.C. Dunand, D.N. Seidman, Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys. Metall. Mater. Trans. A 38, 2552–2563 (2007)

    Article  Google Scholar 

  22. J.L. Murray, A.J. McAlister, D.J. Kahan, The Al–Hf (Aluminum–Hafnium) system. J. Phase. Equil. 19(4), 376–379 (1998)

    Article  CAS  Google Scholar 

  23. G. Ghosh, M. Asta, First-principles calculation of structural energetics of Al–TM (TM = Ti, Zr, Hf) intermetallics. Acta Mater. 53, 3225–3252 (2005)

    Article  CAS  Google Scholar 

  24. K.B. Hyde, A.F. Norman, P.B. Prangnell, The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al–Sc alloys. Acta Mater. 49, 1327–1337 (2001)

    Article  CAS  Google Scholar 

  25. A.V. Shubin, E.A. Popova, KYu. Shunyev, E.A. Pastukhov, Slow crystallization Al–Sc alloys: growth of spherical intermetallic particles. Defect Diffus. Forum 326–328, 75–80 (2012)

    Article  Google Scholar 

  26. A.B. Shubin, E.A. Popova, P.V. Kotenkov, E.A. Pastukhov, Crystallization of Al–Sc–Ti alloys at low cooling rates: morphology of intermetallic particles. Melts 5, 3–11 (2015). (In Russian)

    Google Scholar 

  27. K.B. Hyde, A.F. Norman, P.B. Prangnell, The effect of Ti on grain refinement in Al–Sc alloys. Mater. Sci. Forum 396–402, 39–44 (2002)

    Article  Google Scholar 

  28. S.I. Fujikawa, Solid state diffusion in light metals. J. Jpn. Inst. Light Metals 46(4), 202–215 (1996)

    CAS  Google Scholar 

  29. X.U. Cong, D.U. Rou, X.J. Wang, S. Hanada, H. Yamagata, W.H. Wang, C.L. Ma, Effect of cooling rate on morphology of primary particles in Al−Sc−Zr master alloy. Trans. Nonferrous Met. Soc. China 24, 2420–2426 (2014)

    Article  Google Scholar 

  30. K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, D.N. Seidman, Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater. 58, 5184–5195 (2010)

    Article  CAS  Google Scholar 

  31. H. Hallem, B. Forbord, K. Marthinsen, An investigation of cast structures in Al–Hf– (Sc)–(Zr) alloys and their subsequent effect on recrystallisation resistance after cold rolling. Mater. Forum 28, 240–245 (2004)

    CAS  Google Scholar 

  32. Y. Harada, D.C. Dunand, Microstructure of Al3Sc with ternary transition-metal additions. Mater. Sci. Eng. A 329–331, 686–695 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out according to the state assignment for IMET UB RAS. The results were obtained using the equipment of the Ural-M Center for Collective Use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kotenkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E., Kotenkov, P., Shubin, A. et al. Formation of Metastable Aluminides in Al–Sc–Ti (Zr, Hf) Cast Alloys. Met. Mater. Int. 26, 1515–1523 (2020). https://doi.org/10.1007/s12540-019-00397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00397-x

Keywords

Navigation