Skip to main content
Log in

Enhancement in Viscoplastic Self-Consistent FLD Prediction Model and Its Application for Austenitic and Ferritic Stainless Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The computational algorithm of a crystal-plastic-based FLD predictive model (VPSC-FLD) developed in Jeong et al. (Model Simul Mater Sci Eng, 2016. https://doi.org/10.1088/0965-0393/24/5/055005) is enhanced. A real-time monitor process runs while the forming limit diagram is calculated by parallel computation on various strain loading paths. The monitor process enables the CPU workers to communicate with each other so that the unnecessary model runs can be determined and terminated on the fly. Moreover, the advanced numerical algorithm suggested earlier by Schwindt et al. (Int J Plast 73:62–99, 2015. https://doi.org/10.1016/j.ijplas.2015.01.005) is implemented to VPSC-FLD. The new numerical algorithm and real-time monitor has improved both the overall computational speed and the efficiency in parallel computation. The enhanced VPSC-FLD model is applied for austenitic and ferritic stainless samples in terms of flow stress–strain curve, R-values, and forming limit diagram. The linearization scheme applied on the local constitutive description is studied to reveal its impacts on various macroscopic properties. It is found that the linearization scheme with the best fit on uniaxial data is not necessary the one that gives the best predictive accuracy on the forming limit prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Keeler, W. Backhofen, Plastic instability and fracture in sheet stretched over rigid punches. ASM Trans. Q. 56, 25–48 (1964)

    Google Scholar 

  2. F. Abu-Farha, L.G. Hector, M. Khraisheh, Cruciform-shaped specimens for elevated temperature biaxial testing of lightweight materials. JOM 61, 48–56 (2009). https://doi.org/10.1007/s11837-009-0121-8

    Article  CAS  Google Scholar 

  3. Y. Hanabusa, H. Takizawa, T. Kuwabara, Numerical verification of a biaxial tensile test method using a cruciform specimen. J. Mater. Process. Technol. 213, 961–970 (2013). https://doi.org/10.1016/j.jmatprotec.2012.12.007

    Article  Google Scholar 

  4. J. Li, J.E. Carsley, T.B. Stoughton, L.G. Hector, S.J. Hu, Forming limit analysis for two-stage forming of 5182-O aluminum sheet with intermediate annealing. Int. J. Plast. 45, 21–43 (2013). https://doi.org/10.1016/j.ijplas.2012.10.004

    Article  CAS  Google Scholar 

  5. A.F. Graf, W.F. Hosford, Calculations of forming limit diagrams for changing strain paths ALEJANDRO. Metall. Trans. A 24, 2497–2501 (1993). https://doi.org/10.1007/BF02646528

    Article  Google Scholar 

  6. T.B. Stoughton, General forming limit criterion for sheet metal forming. Int. J. Mech. Sci. 42, 1–27 (2000). https://doi.org/10.1016/S0020-7403(98)00113-1

    Article  Google Scholar 

  7. K. Yoshida, T. Kuwabara, M. Kuroda, Path-dependence of the forming limit stresses in a sheet metal. Int. J. Plast. 23, 361–384 (2007). https://doi.org/10.1016/j.ijplas.2006.05.005

    Article  CAS  Google Scholar 

  8. Z. Marciniak, K. Kuczyński, T. Pokora, Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int. J. Mech. Sci. 15, 789–800 (1973). https://doi.org/10.1016/0020-7403(73)90068-4

    Article  Google Scholar 

  9. Y. Jeong, M.S. Pham, M. Iadicola, A. Creuziger, T. Foecke, Forming limit prediction using a self-consistent crystal plasticity framework: a case study for body-centered cubic materials. Model. Simul. Mater. Sci. Eng. (2016). https://doi.org/10.1088/0965-0393/24/5/055005

    Article  Google Scholar 

  10. C. Schwindt, F. Schlosser, M.A. Bertinetti, M. Stout, J.W. Signorelli, Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: an efficient and robust implementation of the M-K model. Int. J. Plast 73, 62–99 (2015). https://doi.org/10.1016/j.ijplas.2015.01.005

    Article  CAS  Google Scholar 

  11. F. Barlat, O. Richmond, Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets. Mater. Sci. Eng. 95, 15–29 (1987). https://doi.org/10.1016/0025-5416(87)90494-0

    Article  Google Scholar 

  12. K. Inal, K.W. Neale, A. Aboutajeddine, Forming limit comparisons for FCC and BCC sheets. Int. J. Plast. 21, 1255–1266 (2005). https://doi.org/10.1016/j.ijplas.2004.08.001

    Article  Google Scholar 

  13. C. John Neil, S.R. Agnew, Crystal plasticity-based forming limit prediction for non-cubic metals: application to Mg alloy AZ31B. Int. J. Plast. 25, 379–398 (2009). https://doi.org/10.1016/j.ijplas.2008.05.003

    Article  CAS  Google Scholar 

  14. J.S. Nagra, A. Brahme, R.K. Mishra, R.A. Lebensohn, K. Inal, An efficient full-field crystal plasticity-based M-K framework to study the effect of 3D microstructural features on the formability of polycrystalline materials. Model. Simul. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1361-651X/aadc20

    Article  Google Scholar 

  15. J.W. Signorelli, M.A. Bertinetti, P.A. Turner, Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model. Int. J. Plast. 25, 1–25 (2009). https://doi.org/10.1016/j.ijplas.2008.01.005

    Article  CAS  Google Scholar 

  16. H. Wang, P.D. Wu, K.P. Boyle, K.W. Neale, On crystal plasticity formability analysis for magnesium alloy sheets. Int. J. Solids Struct. 48, 1000–1010 (2011). https://doi.org/10.1016/j.ijsolstr.2010.12.004

    Article  CAS  Google Scholar 

  17. P.D. Wu, K.W. Neale, E. Van Der Giessen, On crystal plasticity FLD analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1, 2 (1997). https://doi.org/10.1098/rspa.1997.0099

    Article  Google Scholar 

  18. K. Yoshida, T. Ishizaka, M. Kuroda, S. Ikawa, The effects of texture on formability of aluminum alloy sheets. Acta Mater. 55, 4499–4506 (2007). https://doi.org/10.1016/j.actamat.2007.04.014

    Article  CAS  Google Scholar 

  19. K. Chung, H. Kim, C. Lee, Forming limit criterion for ductile anisotropic sheets as a material property and its deformation path insensitivity. Part I: deformation path insensitive formula based on theoretical models. Int. J. Plast. 58, 3–34 (2014). https://doi.org/10.1016/j.ijplas.2014.03.009

    Article  Google Scholar 

  20. Q. Hu, L. Zhang, Q. Ouyang, X. Li, X. Zhu, J. Chen, Prediction of forming limits for anisotropic materials with nonlinear strain paths by an instability approach. Int. J. Plast. 103, 143–167 (2018). https://doi.org/10.1016/j.ijplas.2018.01.006

    Article  CAS  Google Scholar 

  21. M. Kuroda, V. Tvergaard, Forming limit diagrams for anisotropic metal sheets with different yield criteria. Int. J. Solids Struct. 37, 5037–5059 (2000). https://doi.org/10.1016/S0020-7683(99)00200-0

    Article  Google Scholar 

  22. J. Lian, F. Shen, X. Jia, D.C. Ahn, D.C. Chae, S. Münstermann, W. Bleck, An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction. Int. J. Solids Struct. 151, 20–44 (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.007

    Article  Google Scholar 

  23. L. Zhang, J. Wang, Modeling the localized necking in anisotropic sheet metals. Int. J. Plast. 39, 103–118 (2012). https://doi.org/10.1016/j.ijplas.2012.05.005

    Article  CAS  Google Scholar 

  24. J.W. Hutchinson, K.W. Neale, Sheet Necking-II. Time-independent behavior. Mech. Sheet Met. Form. (2011). https://doi.org/10.1007/978-1-4613-2880-3_6

    Article  Google Scholar 

  25. J.W. Hutchinson, K.W. Neale, Sheet Necking-III. Strain-rate effects. Mech. Sheet Met. Form. (2011). https://doi.org/10.1007/978-1-4613-2880-3_11

    Article  Google Scholar 

  26. A. Gupta, M. Ben Bettaieb, F. Abed-Meraim, S.R. Kalidindi, Computationally efficient predictions of crystal plasticity based forming limit diagrams using a spectral database. Int. J. Plast. 103, 168–187 (2018). https://doi.org/10.1016/j.ijplas.2018.01.007

    Article  Google Scholar 

  27. D. Steglich, Y. Jeong, Texture-based forming limit prediction for Mg sheet alloys ZE10 and AZ31. Int. J. Mech. Sci. 117, 102–114 (2016). https://doi.org/10.1016/j.ijmecsci.2016.08.013

    Article  Google Scholar 

  28. R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. Mater. 41, 2611–2624 (1993). https://doi.org/10.1016/0956-7151(93)90130-K

    Article  CAS  Google Scholar 

  29. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 348, 101–127 (2006). https://doi.org/10.1098/rspa.1976.0027

    Article  Google Scholar 

  30. C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, J.J. Jonas, The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metall. 32, 1637–1653 (1984). https://doi.org/10.1016/0001-6160(84)90222-0

    Article  CAS  Google Scholar 

  31. C.N. Tomé, Self-consistent polycrystal models: a directional compliance criterion to describe grain interactions. Model. Simul. Mater. Sci. Eng. 7, 723–738 (1999). https://doi.org/10.1088/0965-0393/7/5/305

    Article  Google Scholar 

  32. Y. Jeong, F. Barlat, M.-G. Lee, Application of crystal plasticity to an austenitic stainless steel. Model. Simul. Mater. Sci. Eng. (2012). https://doi.org/10.1088/0965-0393/20/2/024009

    Article  Google Scholar 

  33. H. Wang, P.D. Wu, C.N. Tomé, Y. Huang, A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 58, 594–612 (2010). https://doi.org/10.1016/j.jmps.2010.01.004

    Article  CAS  Google Scholar 

  34. R.A. Lebensohn, C.N. Tomé, P.J. Maudlin, A selfconsistent formulation for the prediction of the anisotropic behavior of viscoplastic polycrystals with voids. J. Mech. Phys. Solids 52, 249–278 (2004). https://doi.org/10.1016/S0022-5096(03)00114-5

    Article  Google Scholar 

  35. R. Masson, M. Bornert, P. Suquet, A. Zaoui, An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Solids 48, 1203–1227 (2000). https://doi.org/10.1016/S0022-5096(99)00071-X

    Article  CAS  Google Scholar 

  36. C.N. Tomé, R.A. Lebensohn, Manual for code Visco-Plastic Self-Consistent (VPSC) (2009)

  37. O. Engler, C.N. Tomé, M.Y. Huh, A study of through-thickness texture gradients in rolled sheets. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 31, 2299–2315 (2000). https://doi.org/10.1007/s11661-000-0146-7

    Article  Google Scholar 

  38. M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, D. Raabe, Effect of through-thickness macro and micro-texture gradients on ridging of 17%Cr ferritic stainless steel sheet. Steel Res. Int. (2005). https://doi.org/10.1002/srin.200506098

    Article  Google Scholar 

  39. M.P. Miller, T.J. Turner, A methodology for measuring and modeling crystallographic texture gradients in processed alloys. Int. J. Plast. 17, 783–805 (2001). https://doi.org/10.1016/S0749-6419(00)00068-1

    Article  CAS  Google Scholar 

  40. D. Raabe, Inhomogeneity of the crystallographic texture in a hot-rolled austenitic stainless steel. J. Mater. Sci. 30, 47–52 (1995). https://doi.org/10.1007/BF00352130

    Article  CAS  Google Scholar 

  41. I. Tikhovskiy, D. Raabe, F. Roters, Simulation of earing of a 17% Cr stainless steel considering texture gradients. Mater. Sci. Eng. A 488, 482–490 (2008). https://doi.org/10.1016/j.msea.2007.11.063

    Article  CAS  Google Scholar 

  42. F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX—free and open source software toolbox. Solid State Phenom. 160, 63–68 (2010). https://doi.org/10.4028/www.scientific.net/SSP.160.63

    Article  CAS  Google Scholar 

  43. Y. Jeong, M.S. Pham, M. Iadicola, A. Creuziger, Forming limit diagram predictions using a self-consistent crystal plasticity model: a parametric study. Key Eng. Mater. 651–653, 193–198 (2015). https://doi.org/10.4028/www.scientific.net/kem.651-653.193

    Article  Google Scholar 

  44. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

  45. E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/

  46. T.E. Oliphant, SciPy: open source scientific tools for Python. Comput. Sci. Eng. (2007). https://doi.org/10.1109/MCSE.2007.58

    Article  Google Scholar 

  47. C. Du, F. Maresca, M.G.D. Geers, J.P.M. Hoefnagels, Ferrite slip system activation investigated by uniaxial micro-tensile tests and simulations. Acta Mater. 146, 314–327 (2018). https://doi.org/10.1016/j.actamat.2017.12.054

    Article  CAS  Google Scholar 

  48. Y. Jeong, F. Barlat, M.-G. Lee, Crystal plasticity predictions of forward-reverse simple shear flow stress. Mater. Sci. Forum 702–703, 204–207 (2012). https://doi.org/10.4028/www.scientific.net/MSF.702-703.204

    Article  CAS  Google Scholar 

  49. H. Wang, P.D. Wu, C.N. Tomé, Y. Huang, A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 58, 594–612 (2010). https://doi.org/10.1016/j.jmps.2010.01.004

    Article  CAS  Google Scholar 

  50. F. Barlat, Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Mater. Sci. Eng. 91, 55–72 (1987). https://doi.org/10.1016/0025-5416(87)90283-7

    Article  CAS  Google Scholar 

  51. K. Bandyopadhyay, S. Basak, K.S. Prasad, M.-G. Lee, S.K. Panda, J. Lee, Improved formability prediction by modeling evolution of anisotropy of steel sheets. Int. J. Solids Struct. 156, 263–280 (2018). https://doi.org/10.1016/j.ijsolstr.2018.08.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support from National Research Foundation of Korea (NRF-2017R1D1A1B03031052) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngung Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y., Manninen, T. Enhancement in Viscoplastic Self-Consistent FLD Prediction Model and Its Application for Austenitic and Ferritic Stainless Steels. Met. Mater. Int. 25, 1548–1563 (2019). https://doi.org/10.1007/s12540-019-00292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00292-5

Keywords

Navigation