Skip to main content
Log in

Microstructure and Hydrogen Absorption Properties of a BCC Phase Accompanied Laves Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A non-stoichiometry Zr0.7Ti0.4V1.5Cr0.4 alloy has been synthesized by arc melting following annealing treatment or melt-spinning to obtain the bulk and ribbon samples, respectively. XRD investigation reveals the multiphase structure consisting of C15-Laves, V-BCC and a small amount of α-Zr or Zr3V3O. The alloy shows easy activation and fast hydrogenation kinetics. The annealed alloy absorbs 2.51 wt% H at room temperature, higher than the melt-spun ribbons. Refined grains by melt-spinning accelerates the hydrogenation of bulk alloy. The absorption behavior in presence of 1 mol% air has been tested to evaluate the anti-poisoning ability. Pressure–composition–temperature characteristics and thermodynamics parameters indicate the low equilibrium pressure and high hydrides stability. Hydrides investigation reveals that the Laves phase dominant multiphase structure contributes to the enhanced hydrogen capacity and multi-stage hydrogen release in DSC curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.Y. Hang, Int. J. Energy Res. 37, 683–685 (2013)

    Article  Google Scholar 

  2. M. Karsten, A. Wolfgang, Energy Technol. 1, 501–511 (2013)

    Article  Google Scholar 

  3. Y. Zhang, T. Zhai, B. Li, H. Ren, W. Bu, D. Zhao, J. Mater. Sci. Technol. 30, 1020–1026 (2014)

    Article  Google Scholar 

  4. Y. Zhang, G. Huang, Z. Yuan, H. Shang, Y. Qi, S. Guo, Mater. Sci. Eng. B 225, 1–9 (2017)

    Article  Google Scholar 

  5. K. Young, J. Koch, T. Ouchi, A. Banik, M.A. Fetcenko, J. Alloys Compd. 496, 669–677 (2010)

    Article  Google Scholar 

  6. M.V. Lototskyy, V.A. Yartys, B.G. Pollet, R.C. Bowman, Int. J. Hydrogen Energy 39, 5818–5851 (2014)

    Article  Google Scholar 

  7. Z. Cao, L. Ouyang, H. Wang, J. Liu, L. Sun, M. Felderhoff, M. Zhu, Int. J. Hydrogen Energy 41, 11242–11253 (2016)

    Article  Google Scholar 

  8. Z. Chen, X. Xiao, L. Chen, X. Fan, L. Liu, S. Li, H. Ge, Q. Wang, Int. J. Hydrogen Energy 38, 12803–12810 (2013)

    Article  Google Scholar 

  9. R. Bhattacharyya, S. Mohan, Renew. Sustain. Energy Rev. 41, 872–883 (2015)

    Article  Google Scholar 

  10. M. Glugla, D.K. Murdoch, A. Antipenkov, S. Beloglazov, I. Cristescu, I.R. Cristescu, C. Day, R. Laesser, A. Mack, Fus. Eng. Des. 81, 733–744 (2006)

    Article  Google Scholar 

  11. M. Bereznitsky, D. Mogilyanski, I. Jacob, J. Alloys Compd. 542, 213–217 (2012)

    Article  Google Scholar 

  12. Y. Zhang, J. Li, T. Zhang, T. Wu, H. Kou, X. Xue, J. Alloys Compd. 694, 300–308 (2017)

    Article  Google Scholar 

  13. Y.L. Zhang, J.S. Li, T.B. Zhang, H.C. Kou, R. Hu, X.Y. Xue, Int. J. Hydrogen Energy 39, 19637–19645 (2014)

    Article  Google Scholar 

  14. S. Suwarno, J.K. Solberg, V.A. Yartys, B. Krogh, J. Alloys Compd. 509, S775–S778 (2011)

    Article  Google Scholar 

  15. Y. Wu, M.V. Lototsky, J.K. Solberg, V.A. Yartys, J. Alloys Compd. 509, S640–S645 (2011)

    Article  Google Scholar 

  16. R.R. Shahi, T.P. Yadav, M.A. Shaz, O.N. Srivastava, S. van Smaalen, Int. J. Hydrogen Energy 36, 592–599 (2011)

    Article  Google Scholar 

  17. X.B. Han, Y. Qian, W. Liu, D.M. Chen, K. Yang, J. Mater. Sci. Technol. 32, 1332–1338 (2016)

    Article  Google Scholar 

  18. H. Taizhong, W. Zhu, F. Shanglong, X. Baojia, X. Naixin, Mater. Sci. Eng. A 390, 362–365 (2005)

    Article  Google Scholar 

  19. Y.-H. Zhang, B.-W. Li, H.-P. Ren, X. Li, Y. Qi, D.-L. Zhao, Materials 4, 274 (2011)

    Article  Google Scholar 

  20. F. Cuevas, B. Villeroy, E. Leroy, P. Olier, M. Latroche, J. Alloys Compd. 446–447, 218–223 (2007)

    Article  Google Scholar 

  21. I.Y. Zavaliy, J. Alloys Compd. 291, 102–109 (1999)

    Article  Google Scholar 

  22. X.W. Yang, J.S. Li, T.B. Zhang, R. Hu, X.Y. Xue, H.Z. Fu, Int. J. Hydrogen Energy 36, 9318–9323 (2011)

    Article  Google Scholar 

  23. H. Kou, W. Luo, Z. Huang, G. Sang, C. Hu, C. Chen, G. Zhang, D. Luo, M. Liu, S. Zheng, Int. J. Hydrogen Energy 41, 10811–10818 (2016)

    Article  Google Scholar 

  24. T.B. Zhang, X.W. Yang, J.S. Li, R. Hu, X.Y. Xue, H.Z. Fu, J. Power Sources 202, 217–224 (2012)

    Article  Google Scholar 

  25. G. Srinivas, V. Sankaranarayanan, S. Ramaprabhu, Int. J. Hydrogen Energy 32, 2480–2487 (2007)

    Article  Google Scholar 

  26. M. Beremitsky, I. Jacob, J. Bloch, M.H. Mintz, J. Alloys Compd. 346, 217–221 (2002)

    Article  Google Scholar 

  27. Y. Zhang, J. Li, T. Zhang, H. Kou, R. Hu, X. Xue, Energy 114, 1147–1154 (2016)

    Article  Google Scholar 

  28. K. Young, B. Chao, L.A. Bendersky, K. Wang, J. Power Sources 218, 487–494 (2012)

    Article  Google Scholar 

  29. S. Luo, C.N. Park, T.B. Flanagan, J. Alloys Compd. 384, 208–216 (2004)

    Article  Google Scholar 

  30. A.K.M.F. Kibria, Y. Sakamoto, Int. J. Hydrogen Energy 24, 47–52 (1999)

    Article  Google Scholar 

  31. T.B. Flanagan, J.D. Clewley, J. Less-Common Met. 83, 127–141 (1982)

    Article  Google Scholar 

  32. T.A. Zotov, R.B. Sivov, E.A. Movlaev, S.V. Mitrokhin, V.N. Verbetsky, J. Alloys Compd. 509, S839–S843 (2011)

    Article  Google Scholar 

  33. X. Hou, R. Hu, T. Zhang, H. Kou, J. Li, J. Power Sources 306, 437–447 (2016)

    Article  Google Scholar 

  34. K. Young, T. Ouchi, J. Nei, L. Wang, J. Alloys Compd. 654, 216–225 (2016)

    Article  Google Scholar 

  35. A. Jain, R.K. Jain, S. Agarwal, I.P. Jain, Int. J. Hydrogen Energy 32, 2445–2449 (2007)

    Article  Google Scholar 

  36. T. Zhang, Y. Zhang, J. Li, H. Kou, R. Hu, X. Xue, Mater. Charact. 111, 53–59 (2016)

    Article  Google Scholar 

  37. G. Liang, J. Huot, S. Boily, A.V. Neste, R. Schulz, J. Alloys Compd. 291, 295–299 (1999)

    Article  Google Scholar 

  38. T. Wu, X. Xue, T. Zhang, R. Hu, H. Kou, J. Li, J. Alloys Compd. 645, 358–368 (2015)

    Article  Google Scholar 

  39. L. Peng, C. Jiang, Q. Xu, X. Wu, Fus. Eng. Des. 88, 299–303 (2013)

    Article  Google Scholar 

  40. Y. Zhang, J. Li, T. Zhang, H. Kou, X. Xue, Int. J. Hydrogen Energy 42, 10109–10116 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, T., Li, J. et al. Microstructure and Hydrogen Absorption Properties of a BCC Phase Accompanied Laves Alloy. Met. Mater. Int. 25, 814–820 (2019). https://doi.org/10.1007/s12540-018-0207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0207-3

Keywords

Navigation