Skip to main content
Log in

Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ’ phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ’ phase. With increasing the creeping time, the mismatch between γ and γ’ phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.W. Meetham, M.V.D. Voorde, L. Mishnaevsky, Appl. Mech. Rev. 54, 385 (2001)

    Article  Google Scholar 

  2. E. Wu, G. Sun, B. Chen et al., Acta Mater. 61, 2308 (2013)

    Article  Google Scholar 

  3. J. Coakley, R.C. Reed, J.L.W. Warwick et al., Acta Mater. 60, 2729 (2012)

    Article  Google Scholar 

  4. C.M.F. Rae, R.C. Reed, Acta Mater. 55, 1067 (2007)

    Article  Google Scholar 

  5. T. Link, A. Epishin, M. Klaus et al., Mater. Sci. Eng., A 405, 254 (2005)

    Article  Google Scholar 

  6. R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Scr. Metall. Mater. 31, 1481 (1994)

    Article  Google Scholar 

  7. A. Jacques, F. Diologent, P. Bastie, Mater. Sci. Eng., A 387–89, 944 (2004)

    Article  Google Scholar 

  8. C.M.F. Rae, N. Matan, R.C. Reed, Mater. Sci. Eng., A 300, 125 (2001)

    Article  Google Scholar 

  9. B. Marty, P. Moretto, P. Gergaud et al., Acta Mater. 45, 791 (1997)

    Article  Google Scholar 

  10. L. Müller, U. Glatzel, M. Feller-Kniepmeier, Acta Metall. Mater. 40, 1321 (1992)

    Article  Google Scholar 

  11. A. Epishin, T. Link, U. Brückner et al., Acta Mater. 49, 4017 (2001)

    Article  Google Scholar 

  12. R.C. Reed, D.C. Cox, C.M.F. Rae, Mater. Sci. Eng., A 448, 88 (2007)

    Article  Google Scholar 

  13. P.J. Withers, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17, 355 (2001)

    Article  Google Scholar 

  14. J. Rolph, A. Evans, A. Paradowska et al., C. R. Phys. 13, 307 (2012)

    Article  Google Scholar 

  15. B.J. Foss, S. Gray, M.C. Hardy et al., Acta Mater. 61, 2548 (2013)

    Article  Google Scholar 

  16. R.C. Reed, D.C. Cox, C.M.F. Rae, Mater. Sci. Technol. 23, 893 (2007)

    Article  Google Scholar 

  17. E.I. Galindo-Nava, L.D. Connor, C.M.F. Rae, Acta Mater. 98, 377 (2015)

    Article  Google Scholar 

  18. A. Morançais, M. Fèvre, M. François et al., J. Appl. Crystallogr. 48, 1761 (2015)

    Article  Google Scholar 

  19. M.E. Kartal, F.P.E. Dunne, A.J. Wilkinson, Acta Mater. 60, 5300 (2012)

    Article  Google Scholar 

  20. W. Chen, N. Darowski, I. Zizak et al., Nucl. Instrum. Meth. B 246, 201 (2006)

    Article  Google Scholar 

  21. R. Gilles, D. Mukherji, M. Hoelzel et al., Acta Mater. 54, 1307 (2006)

    Article  Google Scholar 

  22. M. Hofmann, G.A. Seidl, J. Rebelo-Kornmeier et al., Phys. B s 385–386, 1035 (2006)

    Article  Google Scholar 

  23. P.J. Withers, Key Eng. Mater. 108–110, 291 (1995)

    Article  Google Scholar 

  24. M.E. Fitzpatrick, A. Lodini, Analysis of residual stress using neutron and synchrotron radiation (Taylor & Francis, London, 2003), pp. 10–25

    Google Scholar 

  25. S.X. Li, E.G. Ellison, D.J. Smith, J. Strain Anal. 29, 147 (1994)

    Article  Google Scholar 

  26. V. Sass, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 44, 5 (1996)

    Article  Google Scholar 

  27. C.G. Dunn, E.F. Koch, Acta Metall. 5, 548 (1957)

    Article  Google Scholar 

  28. A.C. Yeh, C.M.F. Rae, S. Tin, Superalloys 2004, 677 (2004)

    Google Scholar 

  29. C. Mayr, G. Eggeler, A. Dlouhy, Mater. Sci. Eng., A 207, 51 (1996)

    Article  Google Scholar 

  30. D. Mukherji, H. Gabrisch, W. Chen et al., Acta Mater. 45, 3143 (1997)

    Article  Google Scholar 

  31. M. Kamaraj, C. Mayr, M. Kolbe et al., Acta Mater. 38, 589 (1998)

    Google Scholar 

  32. D. Mukherji, R.P. Wahi, Scr. Mater. 36, 1233 (1997)

    Article  Google Scholar 

  33. G.C. Weatherly, Metal Sci. 2, 25 (1968)

    Article  Google Scholar 

  34. T.M. Pollock, A.S. Argon, Acta Metall. Mater. 40, 1 (1992)

    Article  Google Scholar 

  35. L. Müller, U. Glatzel, M. Feller-Kniepmeier, Acta Metall. Mater. 41, 3401 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work has benefited from the neutron source at FRM II in the Technical University of Munich in Germany. The work is supported by the National Natural Science Foundation of China (51231002 and 51501170), and the Foundation of President of CAEP (2012-1-024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangai Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, F., Wu, E., Zhang, C. et al. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages. Met. Mater. Int. 24, 1002–1011 (2018). https://doi.org/10.1007/s12540-018-0106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0106-7

Keywords

Navigation